Journal of Animal and Veterinary Advances

Year: 2013
Volume: 12
Issue: 12
Page No. 1114 - 1122

Generation of Human Induced Pluripotent Stem Cells with Non-Integrating Episomal Vectors and Xeno-Free Culture System

Authors : Wentao Hu, Qiuyue Yan, Yu Fang, Zhandong Qiu and Suming Zhang

References

Amit, M., V. Margulets, H. Segev, K. Shariki and I. Laevsky et al., 2003. Human feeder layers for human embryonic stem cells. Biol. Reprod., 68: 2150-2156.
PubMed  |  Direct Link  |  

Braam, S.R., L. Zeinstra, S. Litjens, D. Ward‐van Oostwaard and S. van den Brink et al., 2008. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self‐renewal via αVβ5 integrin. Stem Cells, 26: 2257-2265.
CrossRef  |  PubMed  |  

Cerdan, C., S.C. Bendall, L. Wang, M. Stewart, T. Werbowetski and M. Bhatia, 2006. Complement targeting of nonhuman sialic acid does not mediate cell death of human embryonic stem cells. Nature Med., 12: 1113-1114.
CrossRef  |  

Chen, G., D.R. Gulbranson, Z. Hou, J.M. Bolin and V. Ruotti et al., 2011. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods, 8: 424-429.
CrossRef  |  

Cheng, L., H. Hammond, Z. Ye, X. Zhan and G. Dravid, 2003. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem. Cells, 2: 131-142.
CrossRef  |  Direct Link  |  

Heiskanen, A., T. Satomaa, S. Tiitinen, A. Laitinen and S. Mannelin et al., 2007. N‐Glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells, 25: 197-202.
CrossRef  |  

Hisamatsu‐Sakamoto, M., N. Sakamoto and A.S. Rosenberg, 2008. Embryonic stem cells cultured in serum‐free medium acquire bovine apolipoprotein B‐100 from feeder cell layers and serum replacement medium. Stem Cells, 26: 72-78.
CrossRef  |  

Hong, H., K. Takahashi, T. Ichisaka, T. Aoi and O. Kanagawa et al., 2009. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460: 1132-1135.
CrossRef  |  

Hongisto, H., S. Vuoristo, A. Mikhailova, R. Suuronen, I. Virtanen, T. Otonkoski and H. Skottman, 2012. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res., 8: 97-108.
CrossRef  |  

Lai, K.W.H., J.C.Y. Ho, Y.K. Lee, K.M. Ng and K.W. Au et al., 2010. ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder- and serum-free system. Cell. Reprogram., 12: 641-653.
CrossRef  |  Direct Link  |  

Lee, J.B., J.E. Lee, J.H. Park, S.J. Kim, M.K. Kim, S.I. Roh and H.S. Yoon, 2005. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol. Reprod., 1: 42-49.
Direct Link  |  

Lee, J.B., J.M. Song, J.E. Lee, J.H. Park and S.J. Kim et al., 2004. Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction, 6: 727-735.
CrossRef  |  Direct Link  |  

Lin, T., R. Ambasudhan, X. Yuan, W. Li and S. Hilcove et al., 2009. A chemical platform for improved induction of human iPSCs. Nature Methods, 6: 805-808.
CrossRef  |  

Martin, M.J., A. Muotri, F. Gaga and A. Varki, 2005. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med., 2: 228-232.
PubMed  |  

Nakagawa, M., N. Takizawa, M. Narita, T. Ichisaka and S. Yamanaka, 2010. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci., 107: 14152-14157.
CrossRef  |  

Okita, K., Y. Matsumura, Y. Sato, A. Okada and A. Morizane et al., 2011. A more efficient method to generate integration-free human iPS cells. Nature Methods, 8: 409-412.
CrossRef  |  

Polo, J.M., S. Liu, M.E. Figueroa, W. Kulalert and S. Eminli et al., 2010. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnol., 28: 848-855.
CrossRef  |  

Richards, M., C.Y. Fong, W.K. Chan, P.C. Wong and A. Bongso, 2002. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol., 20: 933-936.
PubMed  |  

Richards, M., S. Tan, C.Y. Fong, A. Biswas, W.K. Chan and A. Bongso, 2003. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem. Cells, 5: 546-556.
CrossRef  |  Direct Link  |  

Rodriguez‐Piza, I., Y. Richaud‐Patin, R. Vassena, F. Gonzalez and M.J. Barrero et al., 2010. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno‐free conditions. Stem Cells, 28: 36-44.
CrossRef  |  

Rowland, T.J., L.M. Miller, A.J. Blaschke, E.L. Doss and A.J. Bonham et al., 2009. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev., 19: 1231-1240.
CrossRef  |  

Sakamoto, N., K. Tsuji, L.M. Muul, A.M. Lawler and E.F. Petricoin et al., 2007. Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood, 110: 501-508.
CrossRef  |  

Seki, T., S. Yuasa, M. Oda, T. Egashira and K. Yae et al., 2010. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7: 11-14.
CrossRef  |  PubMed  |  

Si‐Tayeb, K., F.K. Noto, M. Nagaoka, J. Li and M.A. Battle et al., 2010. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51: 297-305.
CrossRef  |  

Silva, J., O. Barrandon, J. Nichols, J. Kawaguchi, T.W. Theunissen and A. Smith, 2008. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol., Vol. 6. 10.1371/journal.pbio.0060253

Sugii, S., Y. Kida, T. Kawamura, J. Suzuki and R. Vassena et al., 2010. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Natl. Acad. Sci., 107: 3558-3563.
CrossRef  |  

Tadtfeld, M., M. Nagaya, J. Utikal, G. Weir and K. Hochedlinger, 2008. Induced pluripotent stem cells generated without viral integration. Science, 322: 945-949.
PubMed  |  

Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. Yamanaka, 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861-872.
PubMed  |  Direct Link  |  

Unger, C., S. Gao, M. Cohen, M. Jaconi and R. Bergstrom et al., 2009. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Human Reprod., 24: 2567-2581.
CrossRef  |  

Wang, Q., X. Mou, H. Cao, Q. Meng and Y. Ma et al., 2012. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Protein Cell, 3: 51-59.
CrossRef  |  

Wang, Q., Z.F. Fang, F. Jin, Y. Lu, H. Gai and H.Z. Sheng, 2005. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells, 23: 1221-1227.
CrossRef  |  

Xiong, Y.J., B. Yin, L.C. Xiao, Q. Wang and L. Gan et al., 2013. Proliferation and differentiation of neural stem cells co-cultured with cerebral microvascular endothelial cells after oxygen-glucose deprivation. J. Huazhong Univ. Sci. Technol. (Med. Sci.), 33: 63-68.
CrossRef  |  

Yu, J., K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, I.I. Slukvin and J.A. Thomson, 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324: 797-801.
CrossRef  |  Direct Link  |  

Yu, J., M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget and J.L. Frane et al., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318: 1917-1920.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved