Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 9
Page No. 2750 - 2760

Automated and Specific State Detection of RDX and TNT using Wireless Sensor Networks

Authors : R.V. Kishore Kumar and G. Murali

References

Azzarelli, J.M., K.A. Mirica, J.B. Ravnsbæk and T.M. Swager, 2014. Wireless gas detection with a Smartphone via RF communication. Proc. National Acad. Sci., 111: 18162-18166.
CrossRef  |  Direct Link  |  

Ball, M.G., B. Qela and S. Wesolkowski, 2016. A Review of the use of Computational Intelligence in the Design of Military Surveillance Networks. In: Recent Advances in Computational Intelligence in Defense and Security, Abielmona, R., R. Falcon, N. Zincir-Heywood and H. Abbass (Eds.). Springer, Cham, Switzerland, ISBN:978-3-319-26448-6, pp: 663-693.

Banerjee, D., Z. Hu and J. Li, 2014. Luminescent metal-organic frameworks as explosive sensors. Dalton Trans., 43: 10668-10685.
Direct Link  |  

Becher, C., P. Kaul, J. Mitrovics and J. Warmer, 2010. The detection of evaporating hazardous material released from moving sources using a gas sensor network. Sens. Actuators B. Chem., 146: 513-520.
Direct Link  |  

Bolton, O. and A.J. Matzger, 2011. Improved stability and smart‐material functionality realized in an energetic cocrystal. Intl. Edn. Appl. Chem., 50: 8960-8963.
CrossRef  |  Direct Link  |  

Cooks, R.G., 2004. Gas-phase reactions for selective detection of the explosives TNT and RDX. Chem. Commun., 1: 40-41.
CrossRef  |  Direct Link  |  

Drzyzga, O., T. Gorontzy, A. Schmidt and K.H. Blotevogel, 1995. Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch. Environ. Contam. Toxicol., 28: 229-235.
Direct Link  |  

EPA., 2014. Technical fact sheet: Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). United States Environmental Protection Agency, Washington, USA.

Engel, Y., R. Elnathan, A. Pevzner, G. Davidi and E. Flaxer et al., 2010. Supersensitive detection of explosives by silicon nano wire arrays. Intl. Edn. Appl. Chem., 49: 6830-6835.
CrossRef  |  PubMed  |  Direct Link  |  

Flammini, F. and C. Pragliola, 2008. DETECT: A novel framework for the detection of attacks to critical infrastructures. Proceedings of the Coference on Safety, Reliability and Risk Analysis: Theory, Methods and Applications, September 22-25, 2008, CRC Press, Valencia, Spain, pp: 105-112.

Freeman, J.D. and S. Simi, 2011. Robot assisted wireless sensor network for monitoring and detection of explosives in indoor environment. Intl. J. Comput. Sci. Eng., 3: 2046-2053.

Jaaz, Z.A.H., 2014. Integrating internet of things and wireless sensor networks for metropolitan explosive detection. Ph.D Thesis, Middle East University, Lebanon.

Jain, P.C. and R. Kushwaha, 2012. Wireless gas sensor network for detection and monitoring of harmful gases in utility areas and industries. Proceedings of the 6th International Conference on Sensing Technology (ICST), December 18-21, 2012, IEEE, Kolkata, India, ISBN:978-1-4673-2246-1, pp: 642-646.

Jeon, K.M., D.Y. Lee, H.K. Kim and M.J. Lee, 2014. Acoustic Surveillance of Hazardous Situations using Nonnegative Matrix Factorization and Hidden Markov Model. In: Audio Engineering Society Convention, Jeon, K.M., D.Y. Lee, H.K. Kim and M.J. Lee (Eds.). Curran Associates, Inc, Los Angeles, California, USA., ISBN:978-1-63439-748-3, pp: 1-5.

Kubota, N., 2002. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH, Weinheim, Germany, ISBN:9783527302109, Pages: 245.

Kuhl, A.L., D.A. White and B.A. Kirkendall, 2014. Electromagnetic waves from TNT explosions. J. Electromagn. Anal. Appl., 6: 280-295.
Direct Link  |  

Kumar, N. and K.J. Sushanth, 2016. Gesture contolled robotic arm using wireless networks. Intl. J. Core Eng. Manage., 3: 91-101.
Direct Link  |  

Kumar, R.K. and G. Murali, 2016. A survey on the present state-of-the-art of explosives, detection methods and automatic explosive detection using wireless sensor network. Intl. J. Appl. Eng. Res., 11: 504-510.
Direct Link  |  

Kuznetsov, V.L., A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk and S.K. Shaikhutdinov et al., 1994. Effect of explosion conditions on the structure of detonation Soots: Ultra disperse diamond and onion carbon. Carbon, 32: 873-882.
Direct Link  |  

Liu, J., W.H. Fan, X. Chen and J. Xie, 2016. Identification of high explosive RDX using terahertz imaging and spectral fingerprints. J. Phys. Conf. Ser., 680: 1-10.
CrossRef  |  Direct Link  |  

Lopez, E., R. Rengel, G.W. Mair and F. Isorna, 2015. Analysis of high-pressure hydrogen and natural gas cylinders explosions through TNT equivalent method. Proceedings of the Iberian Symposium on hydrogen, fuel cells and advanced batteries, July 5-8, 2015, Hyceltec, Tenerife, Spain, pp: 1-7.

Lopez-Moreno, C., S. Palanco, J.J. Laserna, F. DeLucia Jr. and A.W. Miziolek et al., 2006. Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J. Anal. At. Spectrom., 21: 55-60.
CrossRef  |  Direct Link  |  

Makeenkov, A., I. Lapitskiy, A. Somov and A. Baranov, 2015. Flammable gases and vapors of flammable liquids: Monitoring with infrared sensor node. Sens. Actuators B. Chem., 209: 1102-1107.
Direct Link  |  

Millar, D.I., I.D. Oswald, C. Barry, D.J. Francis and W.G. Marshall et al., 2010. Pressure-cooking of explosives: The crystal structure of ε-RDX as determined by X-ray and neutron diffraction. Chem. Commun., 46: 5662-5664.
Direct Link  |  

Millar, D.I., I.D. Oswald, D.J. Francis, W.G. Marshall and C.R. Pulham et al., 2009. The crystal structure of β-RDX: An elusive form of an explosive revealed. Chem. Commun., 5: 562-564.
Direct Link  |  

Mohan, M. and S. Shelly, 2016. Border security robot. Intl. J. Cybernetics Inf., 5: 275-283.
Direct Link  |  

Monteil-Rivera, F., C. Beaulieu, S. Deschamps, L. Paquet and J. Hawari, 2004. Determination of explosives in environmental water samples by solid-phase microextraction-liquid chromatography. J. Chromatogr. A., 1048: 213-221.
Direct Link  |  

Muthukumaresan, M.B., V.S. Ramesh and S.J. Kumar, 2012. A quantitative approach to detect explosives. Intl. J. Eng. Technol., 2: 1324-1327.

Pablos, J.L., L.A. Sarabia, M.C. Ortiz, A. Mendia and A. Munoz et al., 2015. Selective detection and discrimination of nitro explosive vapors using an array of three luminescent sensory solid organic and hybrid polymer membranes. Sens. Actuators B. Chem., 212: 18-27.
Direct Link  |  

Pablos, J.L., M. Trigo-Lopez, F. Serna, F.C. Garcia and J.M. Garcia, 2014. Solid polymer substrates and smart fibres for the selective visual detection of TNT both in vapour and in aqueous media. RSC. Adv., 4: 25562-25568.
Direct Link  |  

Potyrailo, R.A. and W.G. Morris, 2007. Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem., 79: 45-51.
CrossRef  |  Direct Link  |  

Raghuram, P. and V. Venkatesh, 2012. Enhancing mine safety with wireless sensor networks using zigbee technology. J. Theor. Applied Inform. Technol., 37: 261-267.
Direct Link  |  

Rehman, A. and X. Zeng, 2015. Methods and approaches of utilizing ionic liquids as gas sensing materials. RSC. Adv., 5: 58371-58392.
Direct Link  |  

Sekhar, P.K., E.L. Brosha, R. Mukundan and F. Garzon, 2010. Chemical sensors for environmental monitoring and homeland security. Electrochem. Soc. Interface, 19: 35-40.
CrossRef  |  Direct Link  |  

Shen, J.P., X.H. Duan, Q.P. Luo, Y. Zhou and Q. Bao et al., 2011. Preparation and characterization of a novel cocrystal explosive. Crystal Growth Des., 11: 1759-1765.
CrossRef  |  Direct Link  |  

Shen, Y.C., A.T. Lo, P.F. Taday, B.E. Cole and W.R. Tribe et al., 2005. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett., 86: 1-3.
Direct Link  |  

Sheremata, T.W., A. Halasz, L. Paquet, S. Thiboutot and G. Ampleman et al., 2001. The fate of the cyclic nitramine explosive RDX in natural soil. Environ. Sci. Technol., 35: 1037-1040.
CrossRef  |  Direct Link  |  

Simi, S. and M.V. Ramesh, 2010. Wireless sensor network for remote monitoring and detection of explosives. Proceedings of the International Workshop on Semantic Sensor Web in Conjunction with IC3K 2010, October 25-28, 2010, SciTePress, Valencia, Spain, ISBN:9789898425317, pp: 60-71.

Singh, S., 2007. Sensors: An effective approach for the detection of explosives. J. Hazard. Mater., 144: 15-28.
Direct Link  |  

Somov, A., A. Baranov and D. Spirjakin, 2014. A wireless sensor-actuator system for hazardous gases detection and control. Sens. Actuators A. Phys., 210: 157-164.
Direct Link  |  

Tiwari, A. and R. Premi, 2016. Vulnerability analysis of a factory using highly flammable gases. Intl. J. Sci. Res. Sci. Eng. Technol., 2: 910-914.
Direct Link  |  

Tourne, M., 2014. Developments in explosives characterization and detection. J. Forensic Res., S12: 1-2.
CrossRef  |  

Usmanov, D.T., L.C. Chen, Z. Yu, S. Yamabe and S. Sakaki et al., 2015. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source. J. Mass Spectrom., 50: 651-661.
CrossRef  |  Direct Link  |  

Walsh, M.E., 2001. Determination of nitroaromatic, nitramine and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54: 427-438.
Direct Link  |  

Zhang, B., X. Pan, G.P. Cobb and T.A. Anderson, 2005. Use of Pressurized Liquid Extraction (PLE)-Gas Chromatography-Electron Capture Detection (GC-ECD) for the determination of biodegradation intermediates of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) in soils. J. Chromatogr. B., 824: 277-282.
Direct Link  |  

Zhang, X., N. Schemm, S. Balkir and M.W. Hoffman, 2014. A low-power compact NQR based explosive detection system. IEEE. Sens. J., 14: 497-507.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved