Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 6
Page No. 1800 - 1804

Influence of Surface Morphology on the Optical Properties of Antireflection Coating Formed by Porous Silicon Layer and ZnO Nanocoulms/Porous Silicon

Authors : S.M.Thahab

References

Ahsanulhaq, Q., A. Umar and Y.B. Hahn, 2007. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties. Nanotechnol., 18: 1-8.
CrossRef  |  

Alwan, A.M. and S.M. Ali, 2015. Gradient-Porosity Porous Silicon (GPSi) as anti-reflection coating in solar cells applications. Eng. Technol. J., 33: 152-159.
Direct Link  |  

Dubey, R.S., 2013. Electrochemical fabrication of porous silicon structures for solar cells. Nanosci. Nanoeng., 1: 36-40.
CrossRef  |  Direct Link  |  

Eswar, K.A., F.S. Husairi, A.A. Aziz, M. Rusop and S. Abdullah, 2014. Growth of ZnO nanosturctures on porous silicon in different concentration of Zn2+ Ion. Adv. Mater. Res., 832: 691-694.
CrossRef  |  Direct Link  |  

Feng, L., A. Liu, M. Liu, Y. Ma and J. Wei et al., 2010. Synthesis, characterization and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation. J. Alloys Compd., 492: 427-432.
CrossRef  |  Direct Link  |  

Lee, Y.J., D.S. Ruby, D.W. Peters, B.B. McKenzie and J.W. Hsu, 2008. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett., 8: 1501-1505.
CrossRef  |  PubMed  |  Direct Link  |  

Pap, A.E., K. Kordas, J. Vahakangas, A. Uusimaki and S. Leppavuori et al., 2006. Optical properties of porous silicon Part III: Comparison of experimental and theoretical results. Opt. Mater., 28: 506-513.
CrossRef  |  Direct Link  |  

Shishido, T., K. Yubuta, T. Sato, A. Nomura and J. Ye et al., 2007. Synthesis of Zinc oxide fibers from precursor Bis(acetylacetonato)Zinc: Tracking the mineralization process and micro- and nano-structural changes. J. Alloys Compd., 439: 227-231.
CrossRef  |  Direct Link  |  

Shokrollahi, A., M. Zare, A. Mortezaali and S.S. Ramezani, 2012. Analysis of optical properties of porous silicon nanostructure single and gradient-porosity layers for optical applications. J. Appl. Phys., 112: 053506-1-053506-6.
CrossRef  |  Direct Link  |  

Tang, H., J.C. Chang, Y. Shan, D.D.D. Ma and T.Y. Lui et al., 2009. Growth mechanism of ZnO nanowires via direct Zn evaporation. J. Mater. Sci., 44: 563-571.
CrossRef  |  Direct Link  |  

Thahab, S.M., 2011. Preparation and structural characterizations of ZnO nano-columns grown on porous silicon-silicon (PS/Si (111)) by thermal evaporation. Optoelectron Adv. Mater. Rapid Commun., 5: 1107-1110.

Umar, A. and Y.B. Hahn, 2006. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: Growth mechanism and structural and optical properties. Nanotechnol., 17: 2174-2180.
CrossRef  |  

Wang, Z., X.F. Qian, J. Yin and Z.K. Zhu, 2004. Large-scale fabrication of tower-like, flower-like and tube-like ZnO arrays by a simple chemical solution route. Langmuir, 20: 3441-3448.
CrossRef  |  PubMed  |  Direct Link  |  

Wang, Z.L., 2004. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter, 16: R829-R858.
CrossRef  |  Direct Link  |  

Weiying, O., Z. Lei, D. Hongwei, Z. Jun and W. Wenjing, 2011. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 32: 1-4.
CrossRef  |  Direct Link  |  

Yubuta, K., T. Sato, A. Nomura, K. Haga and T. Shishido, 2007. Structural characterization of ZnO nano-chains studied by electron microscopy. J. Alloys Compd., 436: 396-399.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved