Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 4
Page No. 670 - 675

Scalable Real Time Botnet Detection System for Cyber-Security

Authors : V. Vanitha, V.P. Sumathi, Sindhu Arumugam and Nandhini Selvam

Abstract: Malicious malware can exploit vulnerabilities in the internet computing environment without the user’s knowledge. Today, different types of malware exist in the Internet. Among them one of the malware is known as botnet which is frequently used for many cyber attacks and crimes in the Internet. The aim of this study is to develop a scalable botnet detection framework which will be able to identify and remove stealthy botnets from the real-world network traffic. ‘Storm’ real time, distributed, reliable, fault-tolerant software is used in this work for analyzing the streams of data. Experimental results show that random forest has higher accuracy rate than fuzzy c-means but clustering algorithm is useful to detect the botnet in real time processing.

How to cite this article:

V. Vanitha, V.P. Sumathi, Sindhu Arumugam and Nandhini Selvam, 2016. Scalable Real Time Botnet Detection System for Cyber-Security. Asian Journal of Information Technology, 15: 670-675.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved