Search in Medwell
 
 
Journal of Engineering and Applied Sciences
Year: 2018 | Volume: 13 | Issue: 11 | Page No.: 4080-4092
DOI: 10.36478/jeasci.2018.4080.4092  
Big Data Clustering Using Grid Computing and Bionic Algorithms Based an Entropic Optimization Technique
Saad M. Darwish , Adel A. El-Zoghabi and Moustafa F. Ashry
 
Abstract: More effective marketing, along with new revenue opportunities, enhanced customer service, improved operational efficiency, competitive advantages over peer organizations and huge business benefits are the outcome of the analytical findings. The organizations performance is raised to the maximum using big data which transforms the tremendous amounts of data into knowledge. Performance and utilization of the grid computing are basically dependent on a complex and excessively dynamic way of optimally balancing the load between the available nodes. This study introduces a framework for big data clustering which utilizes grid technology and bionic based algorithms. Analysis of Genetic agorithm, ant colony optimization and particle swarm optimization are implemented regarding to their solutions, issues and improvements concerning load balancing in computational grid. Consequently, a significant system utilization improvement was attained.
 
How to cite this article:
Saad M. Darwish, Adel A. El-Zoghabi and Moustafa F. Ashry, 2018. Big Data Clustering Using Grid Computing and Bionic Algorithms Based an Entropic Optimization Technique. Journal of Engineering and Applied Sciences, 13: 4080-4092.
DOI: 10.36478/jeasci.2018.4080.4092
URL: http://medwelljournals.com/abstract/?doi=jeasci.2018.4080.4092