Asian Journal of Information Technology

Year: 2012
Volume: 11
Issue: 4
Page No. 135 - 143

A Novel Method for the Removal of High Density Salt and Pepper Noise in Grayscale and Color Images

Authors : K. Vasanth and V. Jawahar Senthilkumar

References

Abreau, E. and S.K. Mitra, 1996. Efficient approach for the removal of impulse noise from high corrupted images. IEEE Trans. Image proc., 5: 1012-1025.

Astola, J. and P. Kusmanen, 1997. Fundamentals of Non Linear Digital Filtering. CRC Press, London, ISBN: 9780849325700, Pages: 276.

Bovik, A., 2000. Handbook of Image and Video Processing. Academic Press, New York.

Brownrigg, D.R.K., 1984. The weighted median filter. Commun. ACM, 27: 807-818.
CrossRef  |  

Chan, R.H., C.W. Ho and M. Nikolova, 2005. Salt and pepper noise removal by median type noise detectors and detail preserving regularization. IEEE Trans. Image Proc., 14: 1479-1485.
CrossRef  |  

Chen, T. and K. Ma, 1999. Tri-state median filter for image De-noising. IEEE Trans. Image Proc., 8: 1834-1837.

Eng, H.L. and K.K. Ma, 2001. Noise adaptive soft-switching median filter. IEEE Trans. Image Process., 10: 242-251.
CrossRef  |  Direct Link  |  

Esakkirajan, S., T. Veerakumar, A.N. Subramanyam and C.H. PremChand, 2011. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Proc. Lett., 18: 287-290.
CrossRef  |  Direct Link  |  

Florencio, D.A. and R.W. Schafer, 1994. Decision-based median filtering using local signal logistics. Image Proc., 2038: 268-275.

Hamza, A.B. and H. Krim, 2001. Image denoiseing: A non linear robust statistical approach. IEEE Trans. Signal Proc., 49: 3045-3054.
Direct Link  |  

Huang, T., G. Yang and G. Tang, 1979. Fast two dimensional median filtering algorithm. IEEE Trans. Acoust., Speech Signal Proc., 27: 13-18.
Direct Link  |  

Hwang, H. and R.A. Haddad, 1995. Adaptive median filters: New algorithms and results. IEEE Trans. Image Proc., 4: 499-502.
Direct Link  |  

Ko, S.J. and Y.H. Lee, 1991. Center weighted median filters and their applications to image enhancement. IEEE Trans. Circ. Syst., 38: 984-993.
CrossRef  |  

Manikandan, S. and D. Ebenezer, 2008. A nonlinear Decision-based algorithm for removal of strip lines, drop lines, blotches, band missing and impulses in images and videos. EURASIP J. Image Video Proc., Vol. 2008 10.1155/2008/485921

Roomi, S., I.M. Lakshmi and V.A. Kumar, 2006. A recursive gaussian weighted filter for impulse noise removal. GVIP J., 6: 33-37.
Direct Link  |  

Roomi, S., T.P. Maheswari, V.A. Kumar, 2007. A detail Preserving filter for impulse noise detection and removal. ICGST-GVIP J., 7: 51-56.
Direct Link  |  

Srinivasan, K.S. and D. Ebenezer, 2007. A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett., 14: 189-192.
CrossRef  |  Direct Link  |  

Vijayakumar, V.R., P.T. Vanathi, P.K. anagasabapathy and D. Ebenezer, 2008. High density impulse noise removal using robust estimation based filter. Inte. J. Comp. Sci., Vol. 35

Wang, S., Y. Li, F.L. Chung and M. Xu, 2005. An iterative self adaptive algorithm to impulse noise filtering in color images. Int. J. Inform. Technol., 11: 101-111.
Direct Link  |  

Wang, Z. and D. Zhang, 1999. Progressive switching median filter for removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Sys. II, 46: 78-80.
Direct Link  |  

Xu, X., E.L. Miller, D. Chen and M. Sarhadi, 2004. Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. IEEE Trans. Image Proc., 13: 238-247.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved