Asian Journal of Information Technology

Year: 2014
Volume: 13
Issue: 1
Page No. 29 - 37

Preprocessing and Generation of Association Rules for Bone Marrow Analysis Data of Haematology for Acute Myeloid Leukemia

Authors : D. Minnie and S. Srinivasan

References

Agrawal, R., T. Imielinski and A. Swami, 1993. Database Mining: A performance perspective. IEEE Trans. Knowledge Data Eng., 5: 914-925.
CrossRef  |  

Agrawal, R., T. Imielinski and A. Swami, 1993. Mining association rules between sets of items in large databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, May 25-28, 1993, Washington, DC., USA., pp: 207-216.

Agrawal, R., T. Imielinski and A. Swami, 1993. Mining association rules between sets of items in large databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, May 25-28, 1993, Washington, DC., USA., pp: 207-216.

Aslandogan Y.A. and G.A. Mahajani, 2004. Evidence combination in medical data mining. Proceedings of the International Conference on Information Technology: Coding and Computing, Volume 2, April 5-7, 2004, pp: 465 469-10.1109/ITCC.2004.1286697.

Cerrito, P. and J.C. Cerrito, 2006. Data and text mining the electronic medical record to improve care and to lower costs. Proceedings of the 31st SAS Users Group International Conference on Data Mining and Predictive Modeling, March 26-29, 2006, San Francisco, CA., USA., pp: 1-20-.

Cios, K.J. and G.W. Moore, 2002. Uniqueness of medical data mining. Artif. Intell. Med., 26: 1-24.
PubMed  |  Direct Link  |  

Dogan, S. and I. Turkoglu, 2008. Diagnosing hyperlipidemia using association rules. Math. Comput. Appl., 13: 193-202.
Direct Link  |  

Duca, D.J., 2002. Autoverification in a laboratory information system. Lab. Med., 33: 21-25.
Direct Link  |  

Dunham, M.H., 2007. Data Mining: Introductory and Advanced Topics. Prentice Hall, USA.

Goh, D.H. and R.P. Ang, 2007. An introduction to association rule mining: an application in counseling and help-seeking behavior of adolescents. Behaviour Res. Methods 39: 259-266.
CrossRef  |  

Han, J. and M. Kamber, 2006. Data Mining: Concepts and Techniques. 2nd Edn., Morgan Kaufmann Publisher, San Fransisco, USA., ISBN-13: 978-1558609013, Pages: 800.

Li, J., A. Wai-Chee Fu, H. He, J. Chen and H. Jin, 2005. Mining risk patterns in medical data. Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 21-24, Chicago, Illinois, USA., pp: 770-775.

Minnie, D. and S. Srinivasan, 2011. Application of knowledge discovery in database to blood cell counter data to improve quality control in clinical pathology. Proceedings of the 6th International Conference on Bio-Inspired Computing: Theories and Applications, September 27-29, 2011, Penang, Malaysian, pp: 338-342.

Minnie, D. and S. Srinivasan, 2012. Preprocessing and generation of association rules for automated blood cell counter data in haematology. Proceedings of the International Conference on Recent Advances in Computing and Software Systems, April 25-27, 2012, Chennai, India, pp: 27-32.

Quillen, K. and K. Murphy, 2006. Quality improvement to decrease specimen mislabeling in transfusion medicine. Arch. Pathol. Lab. Med., 130: 1196 -1198.
Direct Link  |  

Srikant, R. and R. Agrawal, 1995. Mining generalized association rules. Proceedings of the 21st International Conference on Very Large Databases, September 11-15, 1995, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA., pp: 407-419.

Toussi, M., J.B. Lamy, P.L. Toumelin and A. Venot, 2009. Using data mining techniques to explore physicians' therapeutic decisions when clinical guidelines do not provide recommendations: Methods and example for type 2 diabetes. BMC Med. Inform. Decis. Making, Vol. 9 10.1186/1472-6947-9-28

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved