Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 1
Page No. 26 - 30

MPPCM: Combing Multiple Classifiers to Improve Protein-Protein Interaction Prediction

Authors : A. Hepsiba and R. Balasubramanian

References

Alberts, B., 1998. The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell, 92: 291-294.
Direct Link  |  

Devos, D. and R.B. Russell, 2007. A more complete, complexed and structured interactome. Curr. Opin. Struct. Biol., 17: 370-377.
CrossRef  |  PubMed  |  Direct Link  |  

Franceschini, A., D. Szklarczyk, S. Frankild, M. Kuhn and M. Simonovic et al., 2013. STRING 9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 41: D808-D815.
CrossRef  |  PubMed  |  Direct Link  |  

Gallone, G., T.I. Simpson, J.D. Armstrong and A.P. Jarman, 2011. Bio:: Homology:: InterologWalk a perl module to build putative protein-protein interaction networks through interolog mapping. BMC. Bioinf., 12: 289-289.
CrossRef  |  PubMed  |  Direct Link  |  

Garcia, J.G., E. Guney, R. Aragues, J.P. Iglesias and B. Oliva, 2010. Biana: A software framework for compiling biological interactions and analyzing networks. BMC. Bioinf., 11: 56-56.
CrossRef  |  PubMed  |  Direct Link  |  

Garcia, J.G., S. Schleker, J.K. Seetharaman and B. Oliva, 2012. BIPS: BIANA interolog prediction server, a tool for protein-protein interaction inference. Nucleic Acids Res., 40: W147-W151.
CrossRef  |  PubMed  |  Direct Link  |  

Gavin, A.C., M. Bosche, R. Krause, P. Grandi and M. Marzioch et al., 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415: 141-147.
CrossRef  |  Direct Link  |  

Gavin, A.C., P. Aloy, P. Grandi, R. Krause and M. Boesche et al., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440: 631-636.
CrossRef  |  Direct Link  |  

Hart, G.T., A.K. Ramani and E.M. Marcotte, 2006. How complete are current yeast and human protein-interaction networks. Genome Biol., 7: 120-128.
CrossRef  |  Direct Link  |  

Herman, D., D. Ochoa, D. Juan, D. Lopez and A. Valencia et al., 2011. Selection of organisms for the co-evolution-based study of protein interactions. BMC. Bioinf., 12: 363-363.
CrossRef  |  Direct Link  |  

Hosur, R., J. Xu, J. Bienkowska and B. Berger, 2010. iWRAP: An interface threading approach with application to prediction of cancer-related protein-protein interactions. J. Mol. Biol., 405: 1295-1310.
CrossRef  |  PubMed  |  

Iglesias, J.P., J. Bonet, J.G. Garcia, M.A.M. Lopez and E. Feliu et al., 2013. Understanding protein-protein interactions using local structural features. J. Mol. Biol., 425: 1210-1224.
CrossRef  |  Direct Link  |  

Kumar, A. and M. Snyder, 2002. Proteomics: Protein complexes take the bait. Nat., 415: 123-124.
CrossRef  |  Direct Link  |  

Lin, C., W. Chen, C. Qiu, Y. Wu and S. Krishnan et al., 2014. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing, 123: 424-435.
CrossRef  |  Direct Link  |  

Maetschke, S.R., M. Simonsen, M.J. Davis and M.A. Ragan, 2012. Gene ontology-driven inference of protein-protein interactions using inducers. Bioinf., 28: 69-75.
CrossRef  |  PubMed  |  Direct Link  |  

Simonsen, M., S.R. Maetschke and M.A. Ragan, 2012. Automatic selection of reference taxa for protein-protein interaction prediction with phylogenetic profiling. Bioinf., 28: 851-857.
CrossRef  |  PubMed  |  Direct Link  |  

Smialowski, P., P. Pagel, P. Wong, B. Brauner and I. Dunger et al., 2010. The negatome database: A reference set of non-interacting protein pairs. Nucleic Acids Res., 38: D540-D544.
CrossRef  |  PubMed  |  Direct Link  |  

Song, L., D. Li, X. Zeng, Y. Wu and L. Guo et al., 2014. nDNA-prot: Identification of DNA-binding proteins based on unbalanced classification. BMC. Bioinf., 15: 298-298.
CrossRef  |  PubMed  |  Direct Link  |  

Sussman, J.L., D. Lin, J. Jiang, N.O. Manning and J. Prilusky et al., 1998. Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr., 54: 1078-1084.
Direct Link  |  

Theofilatos, K.A., C.M. Dimitrakopoulos, K.A. Tsakalidis, D.S. Likothanassis and T.S. Papadimitriou et al., 2011. Computational approaches for the prediction of protein-protein interactions: A survey. Curr. Bioinf., 6: 398-414.
Direct Link  |  

Von Mering, C., R. Krause, B. Snel, M. Cornell, S.G. Oliver, S. Fields and P. Bork, 2002. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417: 399-403.
CrossRef  |  

Xenarios, I., D.W. Rice, L. Salwinski, M.K. Baron and E.M. Marcotte et al., 2000. DIP: The database of interacting proteins. Nucleic Acids Res., 28: 289-291.
CrossRef  |  Direct Link  |  

Yu, C.Y., L.C. Chou and D.T.H. Chang, 2010. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC. Bioinf., 11: 167-167.
CrossRef  |  PubMed  |  Direct Link  |  

Zhang, Y., D. Zhang, G. Mi, D. Ma and G. Li et al., 2012. Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. Comput. Biol. Chem., 36: 36-41.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved