Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 17
Page No. 3205 - 3216

Detecting Shotgun Surgery Bad Smell Using Similarity Measure Distribution Model

Authors : G. Saranya, H. Khanna Nehemiah, A. Kannan and S. Vimala

References

Abbes, M., F. Khomh, Y.G. Gueheneuc and G. Antoniol, 2011. An empirical study of the impact of two antipatterns, blob and spaghetti code, on program comprehension. Proceedings of the 2011 15th European Conference on Software Maintenance and Reengineering (CSMR), March 1-4, 2011, IEEE, Montreal, Quebec, Canada, ISBN:978-1-61284-259-2, pp: 181-190.

Baeza-Yates, R.A. and B. Ribeiro-Neto, 1999. Modern Information Retrieval. 1st Edn., Addison-Wesley Longman Publishing Co., Boston, MA., USA.

Bavota, G., A.D. Lucia, A. Marcus and R. Oliveto, 2010. A two-step technique for extract class refactoring. Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, September 20-24, 2010, Antwerp, Belgium, pp: 151-154.

Bavota, G., Lucia, D.A., A. Marcus and R. Oliveto, 2013. Using structural and semantic measures to improve software modularization. Empirical Software Eng., 18: 901-932.
CrossRef  |  Direct Link  |  

Dexun, J., M. Peijun, S. Xiaohong and W. Tiantian, 2013. Detection and refactoring of bad smell caused by large scale. Int. J. Software Eng. Appl., 4: 1-13.
Direct Link  |  

Fontana, F.A., P. Braione and M. Zanoni, 2012. Automatic detection of bad smells in code: An experimental assessment. J. Object Technol., 11: 1-5.
Direct Link  |  

Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, New York, USA., ISBN-13: 9780201485677, Pages: 431.

Gui, G. and P.D. Scott, 2006. Coupling and cohesion measures for evaluation of component reusability. Proceedings of the 2006 International Workshop on Mining Software Repositories, May 22-23, Shanghai, China, pp: 18-21.

Jiang, D., P. Ma, X. Su and T. Wang, 2014. Distance metric based divergent change bad smell detection and refactoring scheme analysis. Int. J. Innovative Comput. Inf. Control, 10: 1519-1531.
Direct Link  |  

Kessentini, M., S. Vaucher and H. Sahraoui, 2010. Deviance from perfection is a better criterion than closeness to evil when identifying risky code. Proceedings of the IEEE-ACM International Conference on Automated Software Engineering, September 20-24, 2010, ACM, Antwerp, Belgium, ISBN:978-1-4503-0116-9, pp: 113-122.

Khomh, F., M.D. Penta, Y.G. Gueheneuc and G. Antoniol, 2012. An exploratory study of the impact of antipatterns on class change and fault-proneness. Empirical Softw. Eng., 17: 243-275.

Liu, H., Z. Ma, W. Shao and Z. Niu, 2012. Schedule of bad smell detection and resolution: A new way to save effort. IEEE. Trans. Software Eng., 38: 220-235.
CrossRef  |  Direct Link  |  

Mantyla, M., 2003. Bad smells in software-a taxonomy and an empirical study. Ph.D Thesis, Helsinki University of Technology, Espoo, Finland.

Marcus, A., D. Poshyvanyk and R. Ferenc, 2008. Using the conceptual cohesion of classes for fault prediction in object-oriented systems. IEEE. Trans. Software Eng., 34: 287-300.
CrossRef  |  Direct Link  |  

Marinescu, R., 2003. Measurement and quality in object oriented design. Ph.D Thesis, Faculty of Automatics and Computer Science, Politehnical University of Timisoara, Timisoara, Romania.

Marinescu, R., 2004. Detection strategies: Metrics-based rules for detecting design flaws. Proceedings of the 20th IEEE International Conference on Software Maintenance, September 11-14, 2004, IEEE, Timisoara, Romania, ISBN:0-7695-2213-0, pp: 350-359.

Moha, N., Y.G. Gueheneuc, L. Duchien and L.A.F. Meur, 2010. DECOR: A method for the specification and detection of code and design smells. IEEE. Trans. Software Eng., 36: 20-36.
CrossRef  |  Direct Link  |  

Munro, M.J., 2005. Product metrics for automatic identification of bad smell design problems in java source-code. Proceedings of the 11th IEEE International Symposium on Software Metrics (METRICS'05), September 19-22, 2005, IEEE, New York, USA., ISBN:0-7695-2371-4, pp: 15-15.

Olbrich, S., D.S. Cruzes, V. Basili and N. Zazworka, 2009. The evolution and impact of code smells: A case study of two open source systems. Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, October 15-16, 2009, IEEE, Washington, USA., ISBN:978-1-4244-4842-5, pp: 390-400.

Oliveto, R., F. Khomh, G. Antoniol and Y.G. Gueheneuc, 2010. Numerical signatures of antipatterns: An approach based on b-splines. Proceedings of the 2010 14th European Conference on Software Maintenance and Reengineering (CSMR), March 15-18, 2010, IEEE, Salerno, Italy, ISBN:978-1-61284-369-8, pp: 248-251.

Palomba, F., G. Bavota, D.M. Penta, R. Oliveto and D. Poshyvanyk et al., 2015. Mining version histories for detecting code smells. IEEE. Trans. Software Eng., 41: 462-489.
CrossRef  |  Direct Link  |  

Palomba, F., G. Bavota, D.M. Penta, R. Oliveto and D.A. Lucia et al., 2013. Detecting bad smells in source code using change history information. Proceedings of the 2013 IEEE-ACM 28th International Conference on Automated Software Engineering (ASE), November 11-15, 2013, IEEE, Williamsburg, Virginia, USA., ISBN:978-1-4799-0215-6, pp: 268-278.

Pearson, K., 1895. Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Trans. R. Philos. Soc. Ser. A, 186: 343-414.
CrossRef  |  Direct Link  |  

Poshyvanyk, D., A. Marcus, R. Ferenc and T. Gyimothy, 2009. Using information retrieval based coupling measures for impact analysis. Empirical Software Eng., 14: 5-32.
CrossRef  |  Direct Link  |  

Riel, A.J., 1996. Object Oriented Design Heuristics. Addison-Wesley Company, Boston, Massachusetts, ISBN:9780201633856, Pages: 379.

Sahin, D., M. Kessentini, S. Bechikh and K. Deb, 2014. Code-smell detection as a bilevel problem. ACM. Trans. Software Eng. Methodology (TOSEM.), Vol. 24, 10.1145/2675067

Serban, C., 2013. Shotgun surgery design flaw detection: A case-study. Studia Universitatis Babes Bolyai Inf., 58: 65-74.
Direct Link  |  

Sturges, H.A., 1926. The choice of a class interval. J. Am. Stat. Association, 21: 65-66.
Direct Link  |  

Travassos, G., F. Shull, M. Fredericks and V.R. Basili, 1999. Detecting defects in object-oriented designs: using reading techniques to increase software quality. ACM. Sigplan Not., 34: 47-56.
CrossRef  |  Direct Link  |  

Tsantalis, N. and A. Chatzigeorgiou, 2009. Identification of move method refactoring opportunities. IEEE. Trans. Software Eng., 35: 347-367.
CrossRef  |  Direct Link  |  

Tufano, M., F. Palomba, G. Bavota, R. Oliveto and D.M. Penta et al., 2015. When and why your code starts to smell bad. Proceedings of the 37th International Conference on Software Engineering, Vol. 1, May 16-24, 2015, IEEE, Piscataway, New Jersey, USA., ISBN:978-1-4799-1934-5, pp: 403-414.

Yamashita, A. and L. Moonen, 2012. Do code smells reflect important maintainability aspects?. Proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM), September 23-28, 2012, IEEE, New York, USA., ISBN:978-1-4673-2313-0, pp: 306-315.

Yamashita, A. and L. Moonen, 2013. Exploring the impact of inter-smell relations on software maintainability: An empirical study. Proceedings of the 2013 International Conference on Software Engineering, May 18-26, 2013, IEEE, Piscataway, New Jersey, ISBN:978-1-4673-3076-3, pp: 682-691.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved