Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 17
Page No. 3217 - 3231

Computer Aided Diagnosis System for Clinical Decision Making: Experimentation Using Pima Indian Diabetes Dataset

Authors : N. Leema, H. Khanna Nehemiah, A. Kannan and J. Jabez Christopher

References

American Diabetes Association, 2014. Diagnosis and classification of diabetes mellitus. Diabetes care, 37: S81-S90.
CrossRef  |  Direct Link  |  

Beloufa, F. and M.A. Chikh, 2013. Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm. Comput. Methods Programs Biomed., 112: 92-103.
Direct Link  |  

Blake, C.L. and C.J. Merz, 1998. UCI Repository of Machine Learning Databases. 1st Edn., University of California, Irvine, CA.

Broomhead, D.S. and D. Lowe, 1988. Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). MCS Thesis, Royal Signals And Radar Establishment Malvern, UK.

Cetisli, B., 2010. Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1. Expert Syst. Appl., 37: 6093-6101.
Direct Link  |  

Christopher, J.J., H.K. Nehemiah and A. Kannan, 2015. A clinical decision support system for diagnosis of allergic rhinitis based on intradermal skin tests. Comput. Biol. Med., 65: 76-84.
Direct Link  |  

Dennis, B. and S. Muthukrishnan, 2014. AGFS: adaptive genetic fuzzy system for medical data classification. Appl. Soft Comput., 25: 242-252.
Direct Link  |  

Elgawi, O.H. and O. Hasegawa, 2007. Online incremental random forests. Proceeding of the International Conference on Machine Vision, ICMV 2007, December 28-29, 2007, IEEE, Tokyo, Japan, ISBN:978-1-4244-1624-0, pp: 102-106.

Elizabeth, D.S., A. Kannan and H.K. Nehemiah, 2009. Computerā€aided diagnosis system for the detection of bronchiectasis in chest computed tomography images. Intl. J. Imaging Syst. Technol., 19: 290-298.
CrossRef  |  Direct Link  |  

Ephzibah, E.P., 2011. Cost effective approach on feature selection using genetic algorithms and fuzzy logic for diabetes diagnosis. Intl. J. Soft Comput., 2: 1-10.
Direct Link  |  

Ganji, M.F. and M.S. Abadeh, 2011. A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Syst. Appl., 38: 14650-14659.
Direct Link  |  

Ghazavi, S.N. and T.W. Liao, 2008. Medical data mining by fuzzy modeling with selected features. Artif. Intell. Med., 43: 195-206.
Direct Link  |  

Ghosh, S., S. Biswas, D. Sarkar and P.P. Sarkar, 2014. A novel neuro-fuzzy classification technique for data mining. Egypt. Inf. J., 15: 129-147.
CrossRef  |  Direct Link  |  

Goncalves, L.B., M.M.B.R. Vellasco, M.A.C. Pacheco and D.F.J. Souza, 2006. Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Trans. Syst. Man Cybern., 36: 236-248.
CrossRef  |  Direct Link  |  

Guzaitis, J., A. Verikas, A. Gelzinis and M. Bacauskiene, 2009. A Framework for Designing a Fuzzy Rule-Based Classifier. In: Algorithmic Decision Theory, Francesca, R. and T. Alexis (Eds.). Springer, Berlin, Germany, ISBN:978-3-642-04427-4, pp: 434-445.

Jaganathan, P., K. Thangavel, A. Pethalakshmi and M. Karnan, 2007. Classification rule discovery with ant colony optimization and improved quick reduct algorithm. IAENG. Int. J. Comput. Sci., 33: 50-55.
Direct Link  |  

Jane, N.Y., K.H. Nehemiah and K. Arputharaj, 2016. A temporal mining framework for classifying un-evenly spaced clinical data. Appl. Clin. Inf., 7: 1-21.
Direct Link  |  

Kahramanli, H. and N. Allahverdi, 2008. Design of a hybrid system for the Diabetes and heart diseases. Expert Syst. Appl., 35: 82-89.
CrossRef  |  Direct Link  |  

Lee, C.S. and M.H. Wang, 2011. A fuzzy expert system for diabetes decision support application. IEEE. Trans. Syst. Man Cybern. Part B Cybern., 41: 139-153.
CrossRef  |  Direct Link  |  

Lekkas, S. and L. Mikhailov, 2010. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artif. Intell. Med., 50: 117-126.
CrossRef  |  

Luukka, P. and T. Leppalampi, 2006. Similarity classifier with generalized mean applied to medical data. Comput. Biol. Med., 36: 1026-1040.
Direct Link  |  

Mohamadi, H., J. Habibi, M.S. Abadeh and H. Saadi, 2008. Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit., 41: 1824-1833.
Direct Link  |  

Nehemiah, H.K. and A. Kannan, 2006. A diagnostic decision support system for adverse drug reaction using temporal reasoning. Int. J. Artif. Intell. Mach. Learn., 6: 79-86.
Direct Link  |  

Park, M.S. and J.Y. Choi, 2008. Novel Incremental Principal Component Analysis with Improved Performance. In: Structural, Syntactic and Statistical Pattern Recognition, Niels, D.V.L., T. Kasparis, F. Roli, J.T. Kwok and G.C. Anagnostopoulos et al. (Eds.). Springer, Berlin, Heidelberg, ISBN:978-3-540-89688-3, pp: 592-601.

Polat, K. and S. Gunes, 2007. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Process., 17: 702-710.
CrossRef  |  

Polat, K. and S. Gunes, 2007. An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism. Exp. Syst., 24: 252-270.
CrossRef  |  

Pulkkinen, P. and H. Koivisto, 2008. Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int. J. Approximate Reasoning, 48: 526-543.
CrossRef  |  Direct Link  |  

Quteishat, A., C.P. Lim and K.S. Tan, 2010. A modified fuzzy min-max neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Trans. Man Cybern. Syst. Hum., 40: 641-650.
CrossRef  |  Direct Link  |  

Sahan, S., K. Polat, H. Kodaz and S. Gunes, 2005. The Medical Applications of Attribute Weighted Artificial Immune System Diagnosis of Heart and Diabetes Diseases. In: Artificial Immune Systems, Christian, J., M.L. Pilat, P.J. Bentley and J.I. Timmis (Eds.). Springer, Berlin, Heidelberg, ISBN:978-3-540-28175-7, pp: 456-468.

Shortliffe, E.H., R. Davis, S.G. Axline, B.G. Buchanan and C.C. Green et al., 1975. Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system. Comput. Biomed. Res., 8: 303-320.
CrossRef  |  Direct Link  |  

Tang, P.H. and M.H. Tseng, 2009. Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification. Proceeding of the 2009 International Conference on Machine Learning and Cybernetics, July 12-15, 2009, IEEE, Taiwan, China, ISBN:978-1-4244-3702-3, pp: 3070-3075.

Temurtas, H., N. Yumusak and F. Temurtas, 2009. A comparative study on diabetes disease diagnosis using neural networks. Expert Syst. Appl., 36: 8610-8615.
CrossRef  |  Direct Link  |  

Witten, I.H. and E. Frank, 2005. Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edn., Morgan Kaufman, San Francisco, CA., USA., ISBN-13: 9780080477022, Pages: 560.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved