Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 17
Page No. 3238 - 3246

Analysis of DWT-GLCM-Tamura and Angle Features for Variety Identification of Seeds

Authors : Archana Chaugule and S.N. Mali

References

Auttawaitkul, Y., S. Buochareon, T. Maneechukate and N. Dussadee, 2014. Non-destructive identification of breeder rice seed using transparent image analysis. Proceedings of the 2014 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), March 5-8, 2014, IEEE, Sansai, Thailand, ISBN:978-1-4799-3855-1, pp: 1-4.

Borah, S., E.L. Hines and M. Bhuyan, 2007. Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules. J. Food Eng., 79: 629-639.
Direct Link  |  

Cao, W., C. Zhang, J. Wang, S. Liu and X. Xu, 2012. Purity identification of maize seed based on discrete wavelet transform and BP neural network. Trans. Chinese Soc. Agric. Eng., 28: 253-258.
Direct Link  |  

Chaugule, A. and S.N. Mali, 2014. Evaluation of texture and shape features for classification of four paddy varieties. J. Eng., 2014: 1-9.
Direct Link  |  

Choudhary, R., J. Paliwal and D.S. Jayas, 2008. Classification of cereal grains using wavelet, morphological, colour and textural features of non-touching kernel images. Biosyst. Eng., 99: 330-337.
Direct Link  |  

Choudhary, R., S. Mahesh, J. Paliwal and D.S. Jayas, 2009. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosyst. Eng., 102: 115-127.
Direct Link  |  

Duda, R.O. and P.E. Hart, 1973. Pattern Classification and Scene Analysis. 2nd Edn., John Wiley and Sons, New York, ISBN: 0-471-22361-1, pp: 482.

Gonzalez, R.C., R.E. Woods and S.L. Eddins, 2004. Digital Image Processing Using MATLAB. Pearson Prentice Hall, New Jersey, USA., ISBN-13: 978-0130085191, Pages: 609.

Gunes, E.O., S. Aygun, M. Kirci, A. Kalateh and Y. Cakir, 2014. Determination of the varieties and characteristics of wheat seeds grown in Turkey using image processing techniques. Proceedings of the Third International Conference on Agro-Geoinformatics, August 11-14, 2014, IEEE, Istanbul, Turkey, ISBN:978-1-4799-4157-5, pp: 1-4.

Huang, K.Y., 2012. Detection and classification of areca nuts with machine vision. Comput. Math. Appl., 64: 739-746.
Direct Link  |  

Jayas, D.S., J. Paliwal and N.S. Visen, 2000. Multi-layer neural networks for image analysis of agricultural products. J. Agric. Eng. Res., 77: 119-128.

Khunkhett, S. and T. Remsungnen, 2014. Non-destructive identification of pure breeding rice seed using digital image analysis. Proceedings of the 2014 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), March 5-8, 2014, IEEE, Khonkaen, Thailand, ISBN:978-1-4799-3855-1, pp: 1-4.

Li, J., B. Chen, L. Shao, X. Tian and Z. Kan, 2012. Variety identification of delinted cottonseeds based on BP neural network. Trans. Chin. Soc. Agric. Eng., 28: 265-269.
Direct Link  |  

Liu, D., X. Ning, Z. Li, D. Yang and H. Li et al., 2015. Discriminating and elimination of damaged soybean seeds based on image characteristics. J. Stored Prod. Res., 60: 67-74.
Direct Link  |  

Majumdar, S. and D.S. Jayas, 2000. Classification of cereal grains using machine vision. I. Morphology models. Trans. Am. Soc. Agric. Eng., 43: 1669-1675.
Direct Link  |  

Majumdar, S. and D.S. Jayas, 2000. Classification of cereal grains using machine vision.II. Color models. Trans. Am. Soc. Agric. Eng., 43: 1677-1680.
Direct Link  |  

Majumdar, S., D.S. Jayas and S.J. Symons, 1999. Textural features for grain identification. Agric. Eng. J., 8: 213-222.

Mallat, S.G., 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11: 674-693.
CrossRef  |  Direct Link  |  

Mojsilovic, A., M.V. Popovic and D.M. Rackov, 2000. On the selection of an optimal wavelet basis for texture characterization. IEEE. Trans. Image Process., 9: 2043-2050.
CrossRef  |  Direct Link  |  

Paliwal, J., N.S. Shashidhar and D.S. Jayas, 1999. Grain kernel identification using kernel signature. Trans. ASAE., 42: 1921-1924.
CrossRef  |  Direct Link  |  

Paliwal, J., N.S. Visen and D.S. Jayas, 2001. Evaluation of neural network architectures for cereal grain classification using morphological features. J. Agric. Eng. Res., 79: 361-370.

Sarlashkar, A.N., M. Bodruzzaman and M.J. Malkani, 1998. Feature extraction using wavelet transform for neural network based image classification. Proceedings of the Thirtieth Southeastern Symposium on System Theory, March 10, 1998, IEEE, Nashville, Tennessee, USA., ISBN:0-7803-4547-9, pp: 412-416.

Szczypinski, P.M. and P. Zapotoczny, 2012. Computer vision algorithm for barley kernel identification, orientation estimation and surface structure assessment. Comput. Electr. Agric., 87: 32-38.
Direct Link  |  

Tamura, H., S. Mori and T. Yamawaki, 1978. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybernetics, 8: 460-473.
CrossRef  |  

Walker, J.S., 1999. A Primer on Wavelets and their Scientific Applications. Chapman & Hall-CRC, Boca Raton, Florida, USA.,.

Wiwart, M., E. Suchowilska, W. Lajszner and L. Graban, 2012. Identification of hybrids of spelt and wheat and their parental forms using shape and color descriptors. Comput. Electr. Agric., 83: 68-76.
Direct Link  |  

Zheng, C., D.W. Sun and L. Zheng, 2006. Classification of tenderness of large cooked beef joints using wavelet and Gabor textural features. Trans. ASABE., 49: 1447-1454.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved