Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 23
Page No. 4783 - 4789

Localized Region Based Active Contour Algorithm for Segmentation of Abdominal Organs and Tumors in Computer Tomography Images

Authors : S.N. Kumar, A. Lenin Fred, S. Lalitha Kumari and P. Sebastian Varghese

References

Barman, P.C., M.S. Miah, B.C. Singh and T. Khatun, 2011. MRI image segmentation using level set method and implement an medical diagnosis system. Comput. Sci. Eng. Int. J., 1: 1-10.

Bernard, O., D. Friboulet, P. Thevenaz and M. Unser, 2008. Variational B-spline level-set method for fast image segmentation. Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, May 14-17, 2008, IEEE, France, ISBN: 978-1-4244-2002-5, pp: 177-180.

Caselles, V., R. Kimmel and G. Sapiro, 1997. Geodesic active contours. Int. J. Comput. Vision, 22: 61-79.
CrossRef  |  Direct Link  |  

Chan, T.F. and L.A. Vese, 2001. Active contours without edges. IEEE Trans. Image Process., 10: 266-277.
CrossRef  |  Direct Link  |  

Cui, W., Y. Wang, T. Lei, Y. Fan and Y. Feng, 2013. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability. Comput. Math. Methods Med., 2013: 1-12.
Direct Link  |  

Denis, T., M.K. Kalra and P.A. Gevenois, 2012. Radiation Dose from Multidetector CT. 2nd Edn., Springer, Berlin, Germany, ISBN: 978-3-642-24534-3, Pages: 647.

Dietenbeck, T., M. Alessandrini, D. Friboulet and O. Bernard, 2010. CREASEG: A free software for the evaluation of image segmentation algorithms based on level-set. Proceedings of the 2010 IEEE International Conference on Image Processing, September 26-29, 2010, IEEE, France, ISBN: 978-1-4244-7992-4, pp: 665-668.

Gurari, D., D. Theriault, M. Sameki, B. Isenberg and T.A. Pham et al., 2015. How to collect segmentations for biomedical images? A benchmark evaluating the performance of experts, crowdsourced non-experts and algorithms. Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, January 5-9, 2015, IEEE, Boston, Massachusetts, ISBN: 978-1-4799-6683-7, pp: 1169-1176.

Kalra, M.K., M.M. Maher, D.V. Sahani, M.A. Blake and P.F. Hahn et al., 2003. Low-dose CT of the abdomen: Evaluation of image improvement with use of noise reduction filters-pilot study 1. Radiol., 228: 251-256.
Direct Link  |  

Lankton, S. and A. Tannenbaum, 2008. Localizing region-based active contours. IEEE Trans. Image Process., 17: 2029-2039.
CrossRef  |  

Lankton, S., J. Melonakos, J. Malcolm, S. Dambreville and A. Tannenbaum, 2008. Localized statistics for DW-MRI fiber bundle segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops CVPRW'08, June 23-28, 2008, IEEE, Atlanta, USA., pp: 1-8.

Li, C., C.Y. Kao, J.C. Gore and Z. Ding, 2008. Minimization of region-scalable fitting energy for image segmentation. IEEE. Trans. Image Process., 17: 1940-1949.
CrossRef  |  Direct Link  |  

Li, C., R. Huang, Z. Ding, J.C. Gatenby, D.N. Metaxas and J.C. Gore, 2011. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process., 20: 2007-2016.
CrossRef  |  Direct Link  |  

Lin, D.T., C.C. Lei and S.W. Hung, 2006. Computer-aided kidney segmentation on abdominal CT images. IEEE. Trans. Inf. Technol. Biomed., 10: 59-65.
CrossRef  |  Direct Link  |  

Liu, T., H. Xu, W. Jin, Z. Liu and Y. Zhao et al., 2014. Medical image segmentation based on a hybrid region-based active contour model. Comput. Math. Methods Med., 2014: 1-10.
Direct Link  |  

Prasad, S. and N. Ganesan, 2013. An efficient approach for image filtering by using neighbors pixels. Editorial Preface, 4: 133-138.
Direct Link  |  

Qian, X., J. Wang, S. Guo and Q. Li, 2013. An active contour model for medical image segmentation with application to brain CT image. Med. Phys., 40: 1-10.
Direct Link  |  

Shi, Y. and W.C. Karl, 2008. A real-time algorithm for the approximation of level-set-based curve evolution. IEEE. Trans. Image Process., 17: 645-656.
CrossRef  |  Direct Link  |  

Shih, F.Y. and K. Zhang, 2004. Efficient contour detection based on improved snake model. Int. J. Pattern Recognit. Artif. Intell., 18: 197-209.
Direct Link  |  

Shih, F.Y. and K. Zhang, 2007. Locating object contours in complex background using improved snakes. Comput. Vision Image Understanding, 105: 93-98.
Direct Link  |  

Shinde, B., D. Mhaske and A.R. Dani, 2012. Study of noise detection and noise removal techniques in medical images. Int. J. Image Graphics Signal Process., 4: 51-60.
Direct Link  |  

Tamimi, A.M.S.H. and G. Sulong, 2014. A review of snake models in medical MR image segmentation. J. Technol., 69: 101-106.

Tsai, R. and S. Osher, 2003. Review article: Level set methods and their applications in image science. Commun. Math. Sci., 1: 1-20.
Direct Link  |  

Wang, Z. and D. Zhang, 1999. Progressive switching median filter for the removal of impulse noise from highly corrupted images. Circuits Syst. II: Analog Digital Signal Process. IEEE Trans., 46: 78-80.
CrossRef  |  Direct Link  |  

Zhao, Y.Q., X.F. Wang, F.Y. Shih and G. Yu, 2012. A level-set method based on global and local regions for image segmentation. Int. J. Pattern Recognit. Artif. Intell., 26: 1-16.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved