Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 24
Page No. 5075 - 5083

Gain Scheduling of the PID Controller Time Delay System Using Hybrid Methodology for Network Control System

Authors : Isra`a L. Salim, Osama Ali Awad and C.T. Kalaivani

References

Agnihotri, S.P. and L.M. Waghmare, 2014. Regression model for tuning the PID controller with fractional order time delay system. Ain Shams Eng. J., 5: 1071-1081.
Direct Link  |  

Anwar, M.N. and S. Pan, 2015. A frequency response model matching method for PID controller design for processes with dead-time. ISA. Trans., 55: 175-187.
Direct Link  |  

Chang, P.K., J.M. Lin and K.T. Cho, 2011. Ziegler-nichols-based intelligent fuzzy PID controller design for antenna tracking system. Proceedings of the International Multiconference on Engineers and Computer Scientists, March 16-18, 2011, IAENG, Hong Kong, ISBN: 978-988-19251-2-1, pp: 1-6.

Christiansen, D., C. Alexander and R. Jurgen, 2005. Standard Handbook of Electronic Engineering. 5th Edn., McGraw Hill, New York, USA., ISBN: 9780071500845, Pages: 2200.

Farkh, R., K. Laabidi and M. Ksouri, 2009. PI control for second order delay system with tuning parameter optimization. Int. J. Electr. Electron. Eng., 3: 1-7.
Direct Link  |  

Fridman, E. and U. Shaked, 2002. An improved stabilization method for linear time-delay systems. IEEE. Trans. Autom. Control, 47: 1931-1937.
CrossRef  |  Direct Link  |  

Hagiwara, T., K. Yamada, I. Murakami, Y. Ando and T. Sakanushi, 2009. A design method for robust stabilizing modified PID controllers for time-delay plants with uncertainty. Int. J. Innov. Comput. Inf. Control, 5: 3553-3563.
Direct Link  |  

Hamed, B. and W. Issa, 2011. A modified internal model control for unstable-time delayed system. Int. J. Eng. Adv. Technol., 1: 56-62.
Direct Link  |  

Hamidian, H. and A.A. Jalali, 2011. Calculation of PID controller parameters for unstable first order time delay systems. Int. J. Sci. Eng. Res., 2: 70-75.
Direct Link  |  

He, Y., M. Wu, J.H. She and G.P. Liu, 2004. Parameter-dependent lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE. Trans. Autom. Control, 49: 828-832.
CrossRef  |  Direct Link  |  

Karl, J.A. and M.M. Richard, 2010. Feedback Systems: An Introduction for Scientists and Engineers. Princeton Univeristy Press, USA, ISBN: 978-0-691-13576-2, Pages: 387.

Le, B.N., Q.G. Wang and T.H. Lee, 2015. Development of D-decomposition method for computing stabilizing gain ranges for general delay systems. J. Proc. Control, 25: 94-104.
Direct Link  |  

Lee, J.Y., M. Jin and P.H. Chang, 2014. Variable PID gain tuning method using backstepping control with time-delay estimation and nonlinear damping. IEEE. Trans. Ind. Electron., 61: 6975-6985.
CrossRef  |  Direct Link  |  

Liu, X.G., M. Wu, R. Martin and M.L. Tang, 2007. Delay-dependent stability analysis for uncertain neutral systems with time-varying delays. Math. Comput. Simul., 75: 15-27.
Direct Link  |  

Moon, Y.S., P. Park and W.H. Kwon, 1999. Robust stabilization of uncertain linear systems with time-delay. Inst. Control Autom. Syst. Eng., 1: 1144-1148.
Direct Link  |  

Ngo, P.D. and Y.C. Shin, 2015. Gain estimation of nonlinear dynamic systems modeled by an FBFN and the maximum output scaling factor of a self-tuning PI fuzzy controller. Eng. Appl. Artif. Intell., 42: 1-15.
Direct Link  |  

Papachristodoulou, A., M.M. Peet and S.I. Niculescu, 2007. Stability analysis of linear systems with time-varying delays: Delay uncertainty and quenching. Proceedings of the 2007 46th IEEE Conference on Decision and Control, December 12-14, 2007, IEEE, Gif-sur-Yvette, France, ISBN: 978-1-4244-1497-0, pp: 2117-2122.

Park, M., O.M. Kwon, J.H. Park and S. Lee, 2010. Delay-dependent stability criteria for linear time-delay system of neutral type. World Acad. Sci. Eng. Technol., 70: 1014-1018.
Direct Link  |  

Rao, K.G., B.A. Reddy and P.D. Bhavani, 2010. Fuzzy Pi and integrating type fuzzy PID controllers of linear, nonlinear and time-delay systems. Int. J. Comput. Appl., 1: 144-264.

Shamsudin, M.A., R. Mamat, S.M. Ayob and S.W. Nawawi, 2014. Simplified partial state fuzzy-PID control on nonlinear wheel balancing robot. Int. J. Machanical Mechatronics Eng., 14: 65-73.
Direct Link  |  

Shekher, V., P. Rai and O. Prakash, 2012. Comparison between classic PID, integer order PID and fuzzy logic controller for ceramic infrared heater: Analysis using MATLAB/Simulink. Int. J. Eng. Adv. Technol., 1: 222-227.
Direct Link  |  

Singh, K.V. and H. Ouyang, 2013. Pole assignment using state feedback with time delay in friction-induced vibration problems. Acta Mech., 224: 645-656.
CrossRef  |  Direct Link  |  

Sipahi, R., N. Olgac and D. Breda, 2007. Complete stability map of neutral type first order-two time delay systems. Proceedings of the 2007 Conference onAmerican Control, July 9-13, 2007, IEEE, Udine, Italy, ISBN: 1-4244-0988-8, pp: 4933-4938.

Tsang, K., A.B. Rad and W. Chan, 2005. Iterative feedback tuning for positive feedback time delay controller. Int. J. Control Autom. Syst., 3: 640-645.
Direct Link  |  

Vesely, V. and A. Ilka, 2015. Design of robust gain-scheduled PI controllers. J. Franklin Inst., 352: 1476-1494.
Direct Link  |  

Wu, M., Y. He and J.H. She, 2004. New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE. Trans. Autom. Control, 49: 2266-2271.
CrossRef  |  Direct Link  |  

Zhang, J., C.R. Knopse and P. Tsiotras, 2001. Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions. IEEE. Trans. Autom. Control, 46: 482-486.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved