Asian Journal of Information Technology

Year: 2017
Volume: 16
Issue: 7
Page No. 632 - 638

Web Spam Detection and Classification using Hybrid Extensive Machine Learning Algorithm (HEMLA) for Domain Specific Features

Authors : T. Muralidharan, V. Saishanmuga Raja and S.P. Rajagopalan


Becchetti, L., C. Castillo, D. Donato, R.B. Yates and S. Leonardi, 2008. Link analysis for web spam detection. ACM. Trans. Web, Vol. 2, 10.1145/1326561.1326563

Castillo, C., D. Donato, L. Becchetti, P. Boldi, S. Leonardi and M. Santini et al., 2006. A reference collection for web spam. ACM. Sigir Forum, 40: 11-24.
CrossRef  |  Direct Link  |  

Gyongyi, Z. and H.G. Molina, 2005. Web spam taxonomy. Proceedings of the 1st International Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2005), May 10-14, 2005, Stanford University, Chiba, Japan, pp: 1-9.

Han, J. and M. Kamber, 2000. Data Mining: Concept and Techniques. Morgan Kaufmann Publishers, New York, USA.,.

Koprinska, I., J. Poon, J. Clark and J. Chan, 2007. Learning to classify E-mail. Inf. Sci., 177: 2167-2187.
Direct Link  |  

Lai, C.C., 2007. An empirical study of three machine learning methods for spam filtering. Knowledge-Based Syst., 20: 249-254.
CrossRef  |  Direct Link  |  

Ntoulas, A., M. Najork, M. Manasse and D. Fetterly, 2006. Detecting spam web pages through content analysis. Proceedings of the 15th International Conference on World Wide Web, May 23-26, 2006, ACM, Edinburgh, Scotland, ISBN:1-59593-323-9, pp: 83-92.

Raja, V.S. and S.P. Rajagopalan, 2014. A comparative analysis of optimization techniques for artificial neural network in bio medical applications. J. Comput. Sci., 10: 106-106.

Sahami, M., S. Dumais, D. Heckerman and E. Horvitz, 1998. A bayesian approach to filtering junk E-Mail. Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, July 26-27, 1998, Madison, Winconsin, pp: 55-62.

Su, J. and H. Zhang, 2006. Full Bayesian network classifiers. Proceedings of the 23rd International Conference on Machine Learning, June 25-29, 2006, ACM, Pittsburgh, Pennsylvania, ISBN:1-59593-383-2, pp: 897-904.

Yates, R.B. and B.R. Neto, 1999. Modern Information Retrieval. Pearson Education, Upper Saddle River, New Jersey, ISBN:978-81-317-0977-1, Pages: 517.

Yu, B. and Z.B. Xu, 2008. A comparative study for content-based dynamic spam classification using four machine learning algorithms. Knowl. Based Syst., 21: 355-362.
Direct Link  |  

Zhang, H. and D. Li, 2007. Naive bayes text classifier. Proceedings of the 2007 IEEE International Conference on Granular Computing (GRC 2007), November 2-4, 2007, IEEE, Nova Scotia, Canada, ISBN:0-7695-3032-X, pp: 708-708.

Zhang, L., J. Zhou and T. Yao, 2004. An evaluation of statistical spam filtering techniques. ACM Trans. Asia Language Inform. Proc., 3: 243-269.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved