Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 5
Page No. 1164 - 1172

Optimization of Central Patterns Generators

Authors : Abdalftah Elbori, Mehmet Turan and Kutluk Bilge Arikan

References

Alexander, R.M., 1996. Optima for Animals. Princeton University Press, Princeton, New Jersey,.

Alexander, R.M., 2003. Principles of Animal Locomotion. Princeton University Press, Princeton, New Jersey, ISBN:10:978-654-321, Pages: 377.

Amrollah, E. and P. Henaff, 2010. On the role of sensory feedbacks in Rowat-Selverston CPG to improve robot legged locomotion. Front. Neurorob., 4: 113-113.
PubMed  |  Direct Link  |  

Aoi, S. and K. Tsuchiya, 2005. Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots, 19: 219-232.
CrossRef  |  Direct Link  |  

Arena, P., L. Fortuna, M. Frasca and G. Sicurella, 2004. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE. Trans. Syst. Man Cybern. B. (Cybern.), 34: 1823-1837.
CrossRef  |  PubMed  |  Direct Link  |  

Arikan, K.B. and B. Irfanoglu, 2011. A test bench to study bioinspired control for robot walking. J. Control Eng. Appl. Inf., 13: 76-80.
Direct Link  |  

Billard, A. and A.J. Ijspeert, 2000. Biologically inspired neural controllers for motor control in a quadruped robot. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks Vol. 6, July, 27, 2000, IEEE, Los Angeles, California, ISBN:0-7695-0619-4, pp: 637-641.

Brambilla, G., J. Buchli and A.J. Ijspeert, 2006. Adaptive four legged locomotion control based on nonlinear dynamical systems. Proceedings of the International Conference on Simulation of Adaptive Behavior, September 25-29, 2006, Springer, Berlin, Germany, pp: 138-149.

Brown, T.G., 1911. The intrinsic factors in the act of progression in the mammal. Proc. Royal Soc. London. Ser. B. Containing Pap. Biol. Charact., 84: 308-319.
Direct Link  |  

Bucher, D., G. Haspel, J. Golowasch and F. Nadim, 2000. Central Pattern Generators. John Wiley & Sons, Hoboken, New Jersey,.

Buschges, A., 2005. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J. Neurophysiol., 93: 1127-1135.
CrossRef  |  PubMed  |  Direct Link  |  

Casasnovas, B. and P. Meyrand, 1995. Functional differentiation of adult neural circuits from a single embryonic network. J. Neurosci., 15: 5703-5718.
Direct Link  |  

Cho, T.H. and G.M. Jeon, 2016. A method for detecting man-in-the-middle attacks using time synchronization one time password in interlock protocol based internet of things. J. Appl. Phys. Sci., 2: 37-41.
Direct Link  |  

Crespi, A. and A.J. Ijspeert, 2008. Online optimization of swimming and crawling in an amphibious snake robot. IEEE. Trans. Rob., 24: 75-87.
CrossRef  |  Direct Link  |  

Endo, G., J. Nakanishi, J. Morimoto and G. Cheng, 2005. Experimental studies of a neural oscillator for biped locomotion with QRIO. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, April 18-22, 2005, IEEE, Kyoto, Japan, ISBN:0-7803-8914-X, pp: 596-602.

Fukuoka, Y., H. Kimura and A.H. Cohen, 2003. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Intl. J. Rob. Res., 22: 187-202.
Direct Link  |  

Ijspeert, A.J. and A. Crespi, 2007. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, April 10-14, 2007, IEEE, Lausanne, Switzerland, ISBN:1-4244-0601-3, pp: 262-268.

Ijspeert, A.J., 2008. Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21: 642-653.
Direct Link  |  

Ijspeert, A.J., A. Crespi, D. Ryczko and J.M. Cabelguen, 2007. From swimming to walking with a salamander robot driven by a spinal cord model. Sci., 315: 1416-1420.
CrossRef  |  Direct Link  |  

Inagaki, S., H. Yuasa and T. Arai, 2003. CPG model for autonomous decentralized multi-legged robot system-generation and transition of oscillation patterns and dynamics of oscillators. Rob. Auton. Syst., 44: 171-179.
Direct Link  |  

Inagaki, S., H. Yuasa, T. Suzuki and T. Arai, 2006. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control. Rob. Auton. Syst., 54: 118-126.
Direct Link  |  

Maizir, H., R. Suryanita and H. Jingga, 2016. Estimation of pile bearing capacity of single driven pile in sandy soil using finite element and artificial neural network methods. Int. J. Appl. Phys. Sci., 2: 45-50.

Marbach, D., 2004. Evolution and online optimization of central pattern generators for modular robot locomotion. Master Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

Matsuoka, K., 1987. Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern., 56: 345-353.
CrossRef  |  Direct Link  |  

Nolfi, S. and D. Floreano, 2000. Evolutionary Robotics: The Biology, Intelligence and Technology of Self-Organizing Machines. MIT Press, Cambridge, Massachusetts, ISBN:978-0262-640565, Pages: 321.

Parker, G.A. and J.M. Smith, 1990. Optimality theory in evolutionary biology. Nat., 348: 27-33.
Direct Link  |  

Pearson, K.G., 1995. Proprioceptive regulation of locomotion. Current Opin. Neurobiol., 5: 786-791.
Direct Link  |  

Righetti, L. and A.J. Ijspeert, 2006. Programmable central pattern generators: An application to biped locomotion control. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May 15-19, 2006, IEEE, Lausanne, Switzerland, ISBN:0-7803-9505-0, pp: 1585-1590.

Sillar, K.T., 1996. The development of central pattern generators for vertebrate locomotion. Adv. Psychol., 115: 205-221.
Direct Link  |  

Sproewitz, A., R. Moeckel, J. Maye and A.J. Ijspeert, 2008. Learning to move in modular robots using central pattern generators and online optimization. Intl. J. Rob. Res., 27: 423-443.
Direct Link  |  

Taga, G., 1998. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern., 78: 9-17.
CrossRef  |  PubMed  |  Direct Link  |  

Taga, G., Y. Yamaguchi and H. Shimizu, 1991. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern., 65: 147-159.
CrossRef  |  PubMed  |  Direct Link  |  

Vreeswijk, C., L.F. Abbott and E.G. Bard, 1994. When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1: 313-321.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved