Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 12
Page No. 3036 - 3041

Planar Field Emission Current from Individual Carbon Nanotubes

Authors : Cheng-Kuang Huang, Rui Zhu, Qiang Fu, Qing Zhao and Dapeng Yu

References

Bonard, J.M., C. Klinke, K.A. Dean and B.F. Coll, 2003. Degradation and failure of carbon nanotube field emitters. Phys. Rev. B., 67: 115406-115406.
Direct Link  |  

Bonard, J.M., K.A. Dean, B.F. Coll and C. Klinke, 2002. Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett., 89: 197602-197602.
Direct Link  |  

Busta, H.H., 1989. Lateral cold cathode triode structures fabricated on insulating substrates. Proceedings of the 2nd International Conference on Vacuum Microelectronics Held in Bath, July 24-26, 1989, Institute of Physics, London, England, ISBN: 0-85498-055-5, pp: 29-32.

Heer, D.W.A., A. Chatelain and D. Ugarte, 1995. A carbon nanotube field-emission electron source. Sci., 270: 1179-1181.
Direct Link  |  

Kim, C.D., H.S. Jang, S.Y. Lee, H.R. Lee and Y.S. Roh et al., 2006. In situ characterization of the field-emission behaviour of individual carbon nanotubes. Nanotechnol., 17: 5180-5180.
Direct Link  |  

Lee, Y., K. Koh, H. Na, K. Kim, J.J. Kang and J. Kim, 2009. Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt-Pd alloy etch mask. Nanoscale Res. Lett., 4: 364-364.
CrossRef  |  PubMed  |  Direct Link  |  

Monica, A.H., M. Paranjape, G.L. Coles, S.J. Papadakis and R. Osiander, 2008. Toward a lateral carbon nanotube based field emission triode. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom., 26: 838-841.
Direct Link  |  

Rinzler, A.G., J.H. Hafner, P. Nikolaev and L. Lou, 1995. Unraveling nanotubes: Field emission from an atomic wire. Sci., 269: 1550-1550.
PubMed  |  Direct Link  |  

Shrotriya, V., G. Li, Y. Yao, C.W. Chu and Y. Yang, 2006. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett., 88: 073508-073508.
Direct Link  |  

Subramanian, K., Y.M. Wong, W.P. Kang, J.L. Davidson and B.K. Choi et al., 2007. Field emission devices for advanced electronics comprised of lateral nanodiamond or carbon nanotube emitters. Diamond Relat. Mater., 16: 1997-2002.
Direct Link  |  

Teh, A.S., S.B. Lee, K.B.K. Teo, M. Chhowalla and W.I. Milne et al., 2003. Lateral field emitters fabricated using carbon nanotubes. Microelectron. Eng., 67: 789-796.
Direct Link  |  

Tsai, J.T.H. and J.G.S. Li, 2008. Fabrication and characterization of carbon nanotubes integrated on field-emission diode. IEEE. Electron Device Lett., 29: 691-693.
CrossRef  |  Direct Link  |  

Wang, Z.L., R.P. Gao, W.A. De Heer and P. Poncharal, 2002. In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett., 80: 856-858.
Direct Link  |  

Wong, Y.M., W.P. Kang, J.L. Davidson, B.K. Choi and J.H. Huang, 2007. Carbon nanotube lateral field emitters with integrated metallic anode. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom., 25: 548-551.
Direct Link  |  

Xu, F., C. Cheng, F. Xu, C. Zhang and H. Xu et al., 2009. Superparamagnetic magnetite nanocrystal clusters: A sensitive tool for MR cellular imaging. Nanotechnol., 20: 405102-405102.
PubMed  |  Direct Link  |  

Yao, Y., Q. Li, J. Zhang, R. Liu and L. Jiao et al., 2007. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater., 6: 283-286.
CrossRef  |  Direct Link  |  

Zhou, X.T., H.L. Lai, H.Y. Peng, F.C. Au and L.S. Liao et al., 2000. Thin β-SiC nanorods and their field emission properties. Chem. Phys. Lett., 318: 58-62.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved