Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 8
Page No. 2042 - 2048

Design and Implementation of Area Efficient Reversible Full Adder-Subtractor in QCA

Authors : Sharmin Farzana, Ali Newaz Bahar, Nur Mohammad Nahid and Abdul Mohaimin Eusufzai

References

Ahmad, F., G.M. Bhat and P.Z. Ahmad, 2014. Novel adder circuits based on Quantum-Dot Cellular Automata (QCA). Circuits Syst., 5: 1-11.
CrossRef  |  Direct Link  |  

Ahmad, P.Z., F. Ahmad and H.A. Khan, 2014. A new F-shaped XOR gate and its implementations as novel adder circuits based Quantum-dot cellular Automata (QCA). IOSR. J. Comput. Eng., 16: 110-117.
Direct Link  |  

Ahmad, P.Z., F. Ahmad, S.M. Ahmad and R.A. Khan, 2014. Implementation of quantum dot cellular automata based novel full adder and full subtractor. Intl. J. Sci. Res., 3: 573-577.
Direct Link  |  

Amlani, I., A.O. Orlov, G.L. Snider, C.S. Lent and G.H. Benstein, 1998. Demonstration of a six-dot quantum cellular automata system. Applied phys. Lett., 72: 2179-2181.
Direct Link  |  

Azghadi, M.R., O. Kavehei and K. Navi, 2007. A novel design for quantum-dot cellular automata cells and full adders. J. Applied Sci., 7: 3460-3468.
CrossRef  |  Direct Link  |  

Bahar, A.N. and S. Waheed, 2016. Design and implementation of an efficient single layer five input majority voter gate in Quantum-Dot Cellular Automata. Springer Plus, 5: 636-636.
CrossRef  |  PubMed  |  Direct Link  |  

Bahar, A.N., S. Waheed and M.A. Habib, 2014. A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). Proceedings of the 2014 International Conference on Electrical Engineering and Information and Communication Technology (ICEEICT), April 10-12, 2014, IEEE, Tangail, Bangladesh, ISBN:978-1-4799-4820-8, pp: 1-6.

Bahar, A.N., S. Waheed and M.A. Habib, 2015. An efficient layout design of fredkin gate in Quantum-dot Cellular Automata (QCA). Duzce Univ. Sci. Technol. Rev., Vol. 3,

Bahar, A.N., S. Waheed, N. Hossain and M. Asaduzzaman, 2017. A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alexandria Eng. J., Vol. 2017,

Cho, H. and E.E. Swartzlander, 2007. Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 6: 374-383.
CrossRef  |  

Dallaki, H. and M. Mehran, 2015. Novel subtractor design based on Quantum-Dot Cellular Automata (QCA) nanotechnology. Intl. J. Nanosci. Nanotechnol., 11: 257-262.
Direct Link  |  

Hashemi, S., M. Tehrani and K. Navi, 2012. An efficient Quantum-Dot Cellular Automata full-adder. Sci. Res. Essays, 7: 177-189.
CrossRef  |  Direct Link  |  

Kim, K., K. Wu and R. Karri, 2007. The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Design Integ. Circuits Syst., 26: 176-183.
CrossRef  |  

Lakshmi, S.K., G. Athisha, M. Karthikeyan and C. Ganesh, 2010. Design of subtractor using nanotechnology based QCA. Proceedings of the 2010 IEEE International Conference on Communication Control and Computing Technologies (ICCCCT), October 7-9, 2010, IEEE, Salem, India, ISBN:978-1-4244-7769-2, pp: 384-388.

Lent, C.S., P.D. Tougaw and W. Porod, 1994. Quantum cellular automata: The physics of computing with arrays of quantum dot molecules. Proceedings of the Workshop on Physics and Computation (PhysComp'94), November 17-20, 1994, IEEE, Notre Dame, Indiana, ISBN:0-8186-6715-X, pp: 5-13.

Ma, X., J. Huang, C. Metra and F. Lombardi, 2008. Reversible and Testable Circuits for Molecular QCA Design. In: Emerging Nanotechnologies, Tehranipoor, M. (Ed.). Springer, New York, USA., ISBN:978-0-387-74746-0, pp: 157-202.

Orlov, A., G. Amlani Bernstein, C. Lent and G. Snider, 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277: 928-930.
Direct Link  |  

Pudi, V. and K. Sridharan, 2012. Low complexity design of ripple carry and Brent-Kung adders in QCA. IEEE. Trans. Nanotechnol., 11: 105-119.
CrossRef  |  Direct Link  |  

Roohi, A., H. Thapliyal and R.F. DeMara, 2015. Wire crossing constrained QCA circuit design using bilayer logic decomposition. Electron. Lett., 51: 1677-1679.
CrossRef  |  Direct Link  |  

Safavi, A.A. and B.M. Mosleh, 2013. An overview of full adders in QCA technology. Intl. J. Comput. Sci. Eng., 1: 12-35.
Direct Link  |  

Sangsefidi, M., M. Karimpour and M. Sarayloo, 2015. Efficient design of a coplanar adder-subtractor in Quantum-dot Cellular Automata. Proceedings of the 2015 IEEE Symposium on European Modelling (EMS), October 6-8, 2015, IEEE, Mashhad, Iran, ISBN:978-1-5090-0207-8, pp: 456-461.

Santra, S. and U. Roy, 2014. Design and implementation of quantum cellular automata based novel adder circuits. Intl. J. Comput. Electr. Autom. Control Inf. Eng., 8: 1-6.
Direct Link  |  

Sen, B., M. Dutta, S. Some and B.K. Sikdar, 2014. Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM. J. Emerging Technol. Comput. Syst., Vol. 11, 10.1145/2629538

Smith, C.G., 1999. Computation without current. Sci., 284: 274-274.
CrossRef  |  Direct Link  |  

Srivastava, S., A. Asthana, S. Bhanja and S. Sarkar, 2011. QCAPro-an error-power estimation tool for QCA circuit design. Proceedings of the 2011 IEEE International Symposium on Circuits and Systems (ISCAS), May 15-18, 2011, IEEE, New Delhi, India, ISBN:978-1-4244-9473-6, pp: 2377-2380.

Thapliyal, H., M.B. Srinivas and H.R. Arabnia, 2005. Reversible logic synthesis of half, full and parallel subtractors. Proceedings of the 2005 International Conference on Embedded Systems and Applications (ESA 2005), June 27-30, 2005, CSREA Press, Las Vegas, Nevada, ISBN:1-932415-53-X, pp: 231-237.

Timler, J. and C.S. Lent, 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys., 91: 823-831.
Direct Link  |  

Tougaw, P.D. and C.S. Lent, 1994. Logical devices implemented using quantum cellular automata. J. Applied Phys., 75: 1818-1825.
CrossRef  |  Direct Link  |  

Wei, W., K. Walus and G.A. Jullien, 2003. Quantum-dot cellular automata adders. Proceedings of the 3rd Conference on Nanotechnology, August 12-14, 2003, IEEE Xplore, London, pp: 461-464.

Zhang, R., K. Walnut, W. Wang and G. Jullien, 2004. A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol., 3: 443-450.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved