Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 8
Page No. 2152 - 2155

An Overview of Cryogenic Separation Techniques for Natural Gas with High CO2 Content

Authors : Bhajan Lal, Azmi Mohd Shariff, Hilmi Mukhtar, Qazi Nasir and Ali Qasim

References

Ali, A., K. Maqsood, A. Redza, K. Hii and A.B. Shariff et al., 2016. Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas. Chem. Eng. Res. Des., 109: 519-531.
Direct Link  |  

Ali, A., K. Maqsood, N. Syahera, A. Shariff and S. Ganguly, 2014. Energy minimization in cryogenic packed beds during purification of natural gas with high CO2 content. Chem. Eng. Technol., 37: 1675-1685.
CrossRef  |  Direct Link  |  

Atkinson, T.D., J.T. Lavin and D.T. Linnett, 1988. Separation of gaseous mixtures. US. Patent and Trademark Office, Washington, DC., USA.

Berstad, D., P. Neksa and R. Anantharaman, 2012. Low-temperature CO2 removal from natural gas. Energy Procedia, 26: 41-48.
CrossRef  |  Direct Link  |  

Clodic, D. and M. Younes, 2002. A New Method for CO2 Capture: Frosting CO2 at Atmospheric Pressure. In: Greenhouse Gas Control Technologies, Gale, J. and K. Yoichi (Eds.). Elsevier, Kyoto, Japan, ISBN:0-08-043325-1, pp: 155-160.

Clodic, D., R. El-Hitti, M. Younes, A. Bill and F. Casier, 2005. CO2 capture by anti-sublimation thermo-economic process evaluation. Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia, pp: 2-5.

Donnelly, H.G. and D.L. Katz, 1954. Phase equilibria in the carbon dioxide-methane system. Ind. Eng. Chem., 46: 511-517.
CrossRef  |  Direct Link  |  

Garg, S., A.M. Shariff, M.S. Shaikh, B. Lal and H. Suleman et al., 2017. Experimental data, thermodynamic and neural network modeling of CO2 solubility in aqueous sodium salt of l-phenylalanine. J. CO2 Util., 19: 146-156.
Direct Link  |  

Karen, H.W.W., 2013. Cryogenic multiple bed dehydration and CO2 separation during purification of natural gas. Master Thesis, Universiti Teknologi Petronas, Seri Iskandar, Malaysia.

Maqsood, K., A. Ali, A.B. Shariff and S. Ganguly, 2014. Synthesis of conventional and hybrid cryogenic distillation sequence for Puriļ¬cation of natural gas. J. Appl. Sci., 14: 2722-2729.
Direct Link  |  

Maqsood, K., A. Mullick, A. Ali, K. Kargupta and S. Ganguly, 2014. Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies. Rev. Chem. Eng., 30: 453-477.
Direct Link  |  

Maqsood, K., A.H. Ali, A.M. Shariff and S. Ganguly, 2014. Techno-Economic Evaluation of Cryogenic Networks for Separation of CO2 from Natural Gas. In: Applied Mechanics and Materials, Ahmed, I. (Ed.). Trans Tech Publications, Switzerland, pp: 635-638.

Maqsood, K., J. Pal, D. Turunawarasu, A.J. Pal and S. Ganguly, 2014. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content. Korean J. Chem. Eng., 31: 1120-1135.
CrossRef  |  Direct Link  |  

Partoon, B., O. Nashed, Z. Kassim, K.M. Sabil and J. Sangwai et al., 2016. Gas hydrate equilibrium measurement of Methane+Carbon Dioxide+ Tetrahydrofuran+Water system at high CO2 concentrations. Procedia Eng., 148: 1220-1224.
Direct Link  |  

Schach, M.O., B. Oyarzun, H. Schramm, R. Schneider and J.U. Repke, 2011. Feasibility study of CO2 capture by anti-sublimation. Energy Procedia, 4: 1403-1410.
Direct Link  |  

Tuinier, M.J. and M.V.S. Annaland, 2012. Biogas purification using cryogenic packed-bed technology. Ind. Eng. Chem. Res., 51: 5552-5558.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved