Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 2
Page No. 489 - 492

Evolution of Some Geotechnical Soil Properties Improved with Phosphate Binder

Authors : Ibtehaj TahaJawad

References

Chau, C.K., F. Qiao and Z. Li, 2011. Microstructure of magnesium potassium phosphate cement. Constr. Build. Mater., 25: 2911-2917.
CrossRef  |  Direct Link  |  

Chong, L., C. Shi, J. Yang and H. Jia, 2017. Effect of limestone powder on the water stability of magnesium phosphate cement-based materials. Constr. Build. Mater., 148: 590-598.
CrossRef  |  Direct Link  |  

Ding, Z., B. Dong, F. Xing, N. Han and Z. Li, 2012. Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram. Intl., 38: 6281-6288.
CrossRef  |  Direct Link  |  

Engin, T. and V. Ari, 2005. Energy auditing and recovery for dry type cement rotatry kiln systems-A case study. Energy Convers. Manage., 46: 551-562.
CrossRef  |  

Gardner, L.J., S.A. Bernal, S.A. Walling, C.L. Corkhill and J.L. Provis et al., 2015. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cem. Concr. Res., 74: 78-87.
CrossRef  |  Direct Link  |  

Gartner, E.M. and D.E. Macphee, 2011. A physico-chemical basis for novel cementitious binders. Cem. Concr. Res., 41: 736-749.
CrossRef  |  Direct Link  |  

Jawad, I.T., M.R. Taha, Z.H. Majeed and T.A. Khan, 2014. Soil stabilization using lime: Advantages, disadvantages and proposing a potential alternative. Res. J. Applied Sci. Eng. Technol., 8: 510-520.
Direct Link  |  

Li, G., J. Zhang and G. Zhang, 2017. Mechanical property and water stability of the novel CSA-MKPC blended system. Constr. Build. Mater., 136: 99-107.
Direct Link  |  

Ma, H. and B. Xu, 2017. Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio. Mater. Des., 118: 81-88.
CrossRef  |  Direct Link  |  

Ma, H., B. Xu and Z. Li, 2014. Magnesium potassium phosphate cement paste: Degree of reaction, porosity and pore structure. Cem. Concr. Res., 65: 96-104.
CrossRef  |  Direct Link  |  

Mikulcic, H., M. Vujanovic and N. Duic, 2013. Reducing the CO2 emissions in Croatian cement industry. Appl. Energy, 101: 41-48.
CrossRef  |  Direct Link  |  

Rajasekaran, G., 2005. Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. Ocean Eng., 32: 1133-1159.
CrossRef  |  Direct Link  |  

Raymond, N.Y. and V.R. Ouhadi, 2007. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Applied Clay Sci., 35: 238-249.
CrossRef  |  

Viani, A., K. Sotiriadis, P. Sasek and M.S. Appavou, 2016. Evolution of microstructure and performance in magnesium potassium phosphate ceramics: Role of sintering temperature of MgO powder. Ceram. Intl., 42: 16310-16316.
CrossRef  |  Direct Link  |  

Xu, J.H., T. Fleiter, W. Eichhammer and Y. Fan, 2012. Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50: 821-832.
CrossRef  |  Direct Link  |  

Yang, J. and C. Qian, 2010. Effect of borax on hydration and hardening properties of magnesium and pottassium phosphate cement pastes. J. Wuhan Univ. Technol. Mater. Sci. Ed., 25: 613-618.
CrossRef  |  Direct Link  |  

Yang, J., Q. Tang, Q. Wu, X. Li and Z. Sun, 2017. The effect of seawater curing on properties of magnesium potassium phosphate cement. Constr. Build. Mater., 141: 470-478.
CrossRef  |  Direct Link  |  

Yang, J.H., J.M. Shin, C.H. Lee, C.M. Heo and M.K. Jeon et al., 2013. Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics. J. Radioanal. Nucl. Chem., 295: 211-219.
CrossRef  |  Direct Link  |  

Zhang, G., G. Li and T. He, 2017. Effects of sulphoaluminate cement on the strength and water stability of magnesium potassium phosphate cement. Constr. Build. Mater., 132: 335-342.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved