Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 6 SI
Page No. 5196 - 5202

Estimation of Carbon Dioxide Emission Using Adaptive Neuro-Fuzzy Inference System

Authors : Nur Rachman Dzakiyullah, Chairul Saleh, Fadmi Rina and Abdul Rahman Fitra

References

Atsalakis, G.S., 2016. Using computational intelligence to forecast carbon prices. Appl. Soft Comput., 43: 107-116.
Direct Link  |  

Dodman, D., 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urbaniz., 21: 185-201.
CrossRef  |  Direct Link  |  

Dong, Y., B. Xia and W. Chen, 2014. Carbon footprint of urban areas: An analysis based on emission sources account model. Environ. Sci. Policy, 44: 181-189.
CrossRef  |  Direct Link  |  

Druckman, A. and T. Jackson, 2009. The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model. Ecol. Econ., 68: 2066-2077.
CrossRef  |  Direct Link  |  

Eggleston, S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe, 2006. 2006 IPCC guidelines for national greenhouse gas inventories, volume 4: Agriculture, forestry and other land use. IPCC National Greenhouse Gas Inventories Programme Technical Support Unit, Institute for Global Environmental Strategies (IGES), Kamiyamaguchi, Hayama, Kanagawa, Japan.

Fang, K., N. Uhan, F. Zhao and J.W. Sutherland, 2011. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst., 30: 234-240.
CrossRef  |  Direct Link  |  

Ghiasi, M.M., M. Arabloo, A.H. Mohammadi and T. Barghi, 2016. Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA and TEA aqueous solutions. Intl. J. Greenhouse Gas Control, 49: 47-54.
Direct Link  |  

Gholizadeh, F. and F. Sabzi, 2017. Prediction of CO2 sorption in poly (ionic liquid)s using ANN-GC and ANFIS-GC models. Intl. J. Greenhouse Gas Control, 63: 95-106.
Direct Link  |  

Hoffmann, V.H. and T. Busch, 2008. Corporate carbon performance indicators: Carbon intensity, dependency, exposure and risk. J. Ind. Ecol., 12: 505-520.
CrossRef  |  Direct Link  |  

Hosoz, M., H.M. Ertunc, M. Karabektas and G. Ergen, 2013. ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Applied Thermal Eng., 60: 24-32.
CrossRef  |  Direct Link  |  

Lenzen, M., 2008. Double-counting in life cycle calculations. J. Ind. Ecol., 12: 583-599.
CrossRef  |  Direct Link  |  

Noori, R., G. Hoshyaripour, K. Ashrafi and B.N. Araabi, 2010. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmos. Environ., 44: 476-482.
CrossRef  |  Direct Link  |  

Postorino, M.N. and L. Mantecchini, 2014. A transport carbon footprint methodology to assess airport carbon emissions. J. Air Transp. Manage., 37: 76-86.
CrossRef  |  Direct Link  |  

Roos, E. and H. Tjarnemo, 2011. Challenges of carbon labelling of food products: A consumer research perspective. Br. Food J., 113: 982-996.
CrossRef  |  Direct Link  |  

Schmidt, H.J., 2009. Carbon footprinting, labelling and life cycle assessment. Int. J. Life Cycle Assess., 14: 6-9.
CrossRef  |  Direct Link  |  

Shi, V.G., S.C.L. Koh, J. Baldwin and F. Cucchiella, 2012. Natural resource based green supply chain management. Supply Chain Manage.: Int. J., 17: 54-67.
CrossRef  |  Direct Link  |  

Sumathi, S. and S. Paneerselvam, 2010. Computational Intelligence Paradigms: Theory and Applications using MATLAB. 1st Edn., CRC Press, Boca Raton, Florida, USA., ISBN:9781439809037, Pages: 851.

Tian, L., L. Gao and P. Xu, 2010. The evolutional prediction model of carbon emissions in China based on BP neural network. Int. J. Nonlinear Sci., 10: 131-140.
Direct Link  |  

Wiedmann, T., J. Minx, J. Barrett and M. Wackernagel, 2006. Allocating ecological footprints to final consumption categories with input-output analysis. Ecol. Econ., 56: 28-48.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved