Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 11 SI
Page No. 8670 - 8674

A Study on Channel Expansion Structure for Reducing Model Size and Speeding Up of Classifier Using Inverted Residual Block

Authors : Seong-Kyun Han and Soon-Chul Kwon

References

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. MSc Thesis, The Computer Vision Foundation, New York, USA.

Han, D., J. Kim and J. Kim, 2017. Deep pyramidal residual networks. Proceedings of the 2017 IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, IEEE, Honolulu, Hawaii, ISBN:978-1-5386-0457-1, pp: 6307-6315.

He, K., X. Zhang, S. Ren and J. Sun, 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 26-July 1, 2016, IEEE, Las Vegas, Nevada, USA., ISBN:9781509014385, pp: 770-778.

Howard, A.G., M. Zhu, B. Chen, D. Kalenichenko and W. Wang et al., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. Comput. Vision Pattern Recognit., 2017: 1-9.
Direct Link  |  

Krizhevsky, A., I. Sutskever and G.E. Hinton, 2012. Imagenet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems, Leen, T.K., G.D. Thomas and T. Volker (Eds.). MIT Press, Cambridge, Massachusetts, USA., ISBN:0-262-12241-3, pp: 1097-1105.

LeCun, Y., B. Boser, J.S. Denker, D. Henderson and R.E. Howard et al., 1989. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1: 541-551.
Direct Link  |  

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L.C. Chen, 2018. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. J. Mobile Network Communication, Vol. 1801,

Sifre, L. and S. Mallat, 2014. Rigid-motion scattering for image classification. Ph.D Thesis, Ecole Polytechnique, Palaiseau, France.

Szegedy, C., S. Ioffe, V. Vanhoucke and A.A. Alemi, 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the AAAI 31th International Conference on Artificial Intelligence (AAAI-17), February 4-9, 2017, Google, Mountain View, California, USA., pp: 4278-4284.

Design and power by Medwell Web Development Team. © Medwell Publishing 2020 All Rights Reserved