Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 19
Page No. 6947 - 6953

Viscous Flow Over a Permeable Stretching/Shrinking Surface in a Nanofluid: A Stability Analysis

Authors : Ezad H. Hafidzuddin, Roslinda Nazar, Norihan Md. Arifin and Ioan Pop

References

Abu-Nada, E. and H.F. Oztop, 2009. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow, 30: 669-678.
CrossRef  |  Direct Link  |  

Akbar, T., S. Batool, R. Nawaz and Q.M.Z. Zia, 2017. Magnetohydrodynamics flow of nanofluid due to stretching/shrinking surface with slip effect. Adv. Mech. Eng., 9: 1-11.
CrossRef  |  Direct Link  |  

Arifin, N.M., R. Nazar and I. Pop, 2011. Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana, 40: 1359-1367.
Direct Link  |  

Bakar, N.A.A., N. Bachok and N.M. Arifin, 2017. Rotating flow over a shrinking sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids. J. Nanofluids, 6: 1215-1226.
CrossRef  |  Direct Link  |  

Bhattacharyya, K., T. Hayat and A. Alsaedi, 2013. Analytic solution for magnetohydrodynamic boundary layer flow of casson fluid over a stretching/shrinking sheet with wall mass transfer. Chin. Phys. B., Vol. 22, 10.1088/1674-1056/22/2/024702

Choi, S.U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and H.P. Wang (Eds.). ASME, New York, USA., pp: 99-105.

Das, S.K., ‎S.U.S. Choi, ‎W. Yu and T. Pradeep, 2008. Nanofluids: Science and Technology. John Wiley & Sons, Hoboken, New Jersey, USA., ISBN:978-0-470-07473-2, Pages: 396.

Daungthongsuk, W. and S. Wongwises, 2007. A critical review of convective heat transfer of nanofluids. Renewable Sustainable Energy Rev., 11: 797-817.
Direct Link  |  

Fan, J. and L. Wang, 2011. Erratum: Review of heat conduction in nanofluids. J. Heat Transfer, 133: 1-1.
CrossRef  |  Direct Link  |  

Harris, S.D., D.B. Ingham and I. Pop, 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Trans. Porous Media, 77: 267-285.
CrossRef  |  Direct Link  |  

Kakac, S. and A. Pramuanjaroenkij, 2009. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer, 52: 3187-3196.
CrossRef  |  

Khanafer, K., K. Vafai and M. Lightstone, 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer, 46: 3639-3653.
CrossRef  |  

Kierzenka, J. and L.F. Shampine, 2001. A BVP solver based on residual control and the Maltab PSE. ACM. Trans. Math. Software, 27: 299-316.
CrossRef  |  Direct Link  |  

Miklavcic, M. and C.Y. Wang, 2006. Viscous flow due to a shrinking sheet. Quart. Applied Math., 64: 283-290.
Direct Link  |  

Muthtamilselvan, M., P. Kandaswamy and J. Lee, 2010. Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simul., 15: 1501-1510.
CrossRef  |  Direct Link  |  

Najib, N., N. Bachok, N.M. Arifin and F.M. Ali, 2018. Stability analysis of stagnation-point flow in a nanofluid over a stretching/shrinking sheet with second-order slip, soret and dufour effects: A revised model. Appl. Sci., 8: 1-13.
CrossRef  |  Direct Link  |  

Nazar, R., M. Jaradat, N. Arifin and I. Pop, 2011. Stagnation-point flow past a shrinking sheet in a nanofluid. Open Phys., 9: 1195-1202.
CrossRef  |  Direct Link  |  

Nield, D.A. and A.V. Kuznetsov, 2009. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer, 52: 5792-5795.
CrossRef  |  Direct Link  |  

Noor, N.F.M. and I. Hashim, 2009. MHD flow and heat transfer adjacent to a permeable shrinking sheet embedded in a porous medium. Sains Malaysiana, 38: 559-565.
Direct Link  |  

Rosali, H., A. Ishak, R. Nazar and I. Pop, 2015. Rotating flow over an exponentially shrinking sheet with suction. J. Mol. Liq., 211: 965-969.
CrossRef  |  Direct Link  |  

Sajid, M., T. Hayat and T. Javed, 2008. MHD rotating flow of a viscous fluid over a shrinking surface. Nonlinear Dyn., 51: 259-265.
CrossRef  |  Direct Link  |  

Tham, L., R. Nazar and I. Pop, 2012. Mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid. Intl. J. Numer. Methods Heat Fluid Flow, 22: 576-606.
Direct Link  |  

Tiwari, R.K. and M.K. Das, 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer, 50: 2002-2018.
CrossRef  |  Direct Link  |  

Uddin, M.J., W.A. Khan and A.M. Ismail, 2018. Melting and second order slip effect on convective flow of nanofluid past a radiating stretching/shrinking sheet. Propul. Power Res., 7: 60-71.
Direct Link  |  

Vajjha, R.S. and D.K. Das, 2012. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Intl. J. Heat Mass Transfer, 55: 4063-4078.
CrossRef  |  Direct Link  |  

Wang, C.Y., 2008. Stagnation flow towards a shrinking sheet. Intl. J. Non Linear Mech., 43: 377-382.
CrossRef  |  Direct Link  |  

Wang, X.Q. and A.S. Mujumdar, 2008. A review on nanofluids-part I: Theoretical and numerical investigations. Braz. J. Chem. Eng., 25: 613-630.
CrossRef  |  Direct Link  |  

Weidman, P.D. and M.A. Sprague, 2011. Flows induced by a plate moving normal to stagnation-point flow. Acta Mech., 219: 219-229.
CrossRef  |  Direct Link  |  

Weidman, P.D., D.G. Kubitschek and A.M.J. Davis, 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci., 44: 730-737.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved