Journal of Engineering and Applied Sciences

Year: 2020
Volume: 15
Issue: 5
Page No. 1170 - 1174

Intrusion Detection Systems Data Classification by Possibilistic C-Means Method

Authors : Aini Suri Talita and Eri Prasetyo Wibowo


Anderson, J.P., 1980. Computer security threat monitoring and surveillance. Technical Report, James P. Anderson Company, Fort Washington, PA., USA., February 26, 1980.

Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, USA., Pages: 256.

Chou, T.S., K.K. Yen and J. Lou, 2008. Network intrusion detection design using feature selection of soft computing paradigms. Int. J. Comput. Intell., 4: 196-200.

Elsayed, M. and M. Zulkernine, 2015. A classification of intrusion detection systems in the cloud. J. Inf. Process., 23: 392-401.
CrossRef  |  Direct Link  |  

Gong, Y., Y. Fang, L. Liu and J. Li, 2014. Multi-agent intrusion detection system using feature selection approach. Proceedings of the 2014 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, August 27-29, 2014, IEEE, Kitakyushu, Japan, pp: 528-531.

Hettich, S. and S.D. Bay, 1999. The UCI KDD archive []. University of California, Department of Information and Computer Science, Irvine, CA.

Jing, Z., 2009. Image segmentation using possibilistic C means based on particle swarm optimization. Proceedings of the 2009 WRI Global International Congress on Intelligent Systems, May 19-21, 2009, IEEE, Xiamen, China, pp: 119-123.

Karayiannis, N.B., 2000. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators. IEEE. Trans. Neural Netw., 11: 1093-1105.
CrossRef  |  Direct Link  |  

Karnik, N.N. and J.M. Mendel, 2001. Operations on type-2 fuzzy sets. Fuzzy Sets Syst., 122: 327-348.
Direct Link  |  

Koutroumbas, K.D., S.D. Xenaki and A.A. Rontogiannis, 2017. On the convergence of the sparse possibilistic C-means algorithm. IEEE. Trans. Fuzzy Syst., 26: 324-337.
CrossRef  |  Direct Link  |  

Krishnapuram, R. and J.M. Keller, 1993. A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst., 1: 98-110.

Krishnapuram, R. and J.M. Keller, 1996. The possibilistic C-means algorithm: Insights and recommendations. IEEE. Trans. Fuzzy Syst., 4: 385-393.
CrossRef  |  Direct Link  |  

Kumar, M. and R. Mathur, 2014. Unsupervised outlier detection technique for intrusion detection in cloud computing. Proceedings of the International Conference for Convergence of Technology (I2CT), April 6-8, 2014, IEEE., Pune, pp: 1-4.

Mendel, J.M., 2001. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River, New Jersey, USA., pp: 265-272.

Pharate, A., H. Bhat, V. Shilimkar and N. Mhetre, 2015. Classification of intrusion detection system. Int. J. Comput. Appl., 118: 23-26.
Direct Link  |  

Rubio, E., O. Castillo and P. Melin, 2015. A new interval type-2 fuzzy possibilistic C-means clustering algorithm. Proceedings of the 2015 5th World Joint Conference on Soft Computing (WConSC) and the North American Fuzzy Information Processing Society (NAFIPS’15), August 17-19, 2015, IEEE, Redmond, Washington, USA., pp: 1-5.

Simhachalam, B. and G. Ganesan, 2014. Possibilistic fuzzy C-means clustering on medical diagnostic systems. Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I’14), November 27-29, 2014, IEEE, Mysore, India, pp: 1125-1129.

Xenaki, S.D., K.D. Koutroumbas and A.A. Rontogiannis, 2016. Sparsity-aware possibilistic clustering algorithms. IEEE. Trans. Fuzzy Syst., 24: 1611-1626.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2023 All Rights Reserved