Research Journal of Applied Sciences

Year: 2014
Volume: 9
Issue: 12
Page No. 941 - 946

A Novel Project Scheduling Method Based on Fully Fuzzy Linear Programming

Authors : Seyyed Mohammad TabatabaeiMehrizi


Chanas, S. and J. Kamburowski, 1981. The use of fuzzy variables in PERT. Fuzzy Sets Syst., 5: 11-19.
CrossRef  |  Direct Link  |  

Chanas, S. and P. Zielinski, 2001. Critical path analysis in the network with fuzzy activity times. Fuzzy Set. Syst., 122: 195-204.
CrossRef  |  Direct Link  |  

Chang, S., Y. Tsujimura, M. Gen and T. Tazawa, 1995. An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets Syst., 76: 277-288.
CrossRef  |  Direct Link  |  

Chen, S.P., 2006. Analysis of critical paths in a project network with fuzzy activity times. Eur. J. Operat. Res., 183: 442-459.
CrossRef  |  Direct Link  |  

Gazdik, I., 1983. Fuzzy-network planning-FNET. IEEE Trans. Reliab., R-32: 304-313.
CrossRef  |  Direct Link  |  

Herroelen, W. and R. Leus, 2005. Project scheduling under uncertainty: Survey and research potentials. Eur. J. Operat. Res., 165: 289-306.
CrossRef  |  Direct Link  |  

Kumar, A., J. Kaur and P. Singh, 2011. A new method for solving fully fuzzy linear programming problems. Applied Math. Modell., 35: 817-823.
CrossRef  |  

Lai, Y.J. and C.L. Hwang, 1992. Fuzzy Mathematical Programming: Methods and Applications. Springer-Verlag, Berlin, Germany, ISBN-13: 9783540560982, Pages: 301.

Lorterapong, P. and O. Moselhi, 1996. Project-network analysis using fuzzy sets theory. J. Constr. Eng. Manage., 122: 308-318.
CrossRef  |  Direct Link  |  

McCahon, C.S., 1993. Using PERT as an approximation of fuzzy project-network analysis. IEEE Trans. Eng. Manage., 40: 146-153.
CrossRef  |  Direct Link  |  

Nasution, S.H., 1994. Fuzzy critical path method. IEEE Trans. Syst. Man. Cyber., 24: 48-57.
CrossRef  |  Direct Link  |  

Soltani, A. and R. Haji, 2007. A project scheduling method based on fuzzy theory. J. Ind. Syst. Eng., 1: 70-80.
Direct Link  |  

Yao, J.S. and F.T. Lin, 2000. Fuzzy critical path method based on signed distance ranking of fuzzy numbers. IEEE Trans. Syst., Man Cybern. Part A: Syst. Hum., 30: 76-82.
CrossRef  |  Direct Link  |  

Zadeh, L., 1965. Fuzzy Sets, Information and Control. Vol. 8, CRC Press, New York, pp: 338-353.

Zareei, A., F. Zaerpour, M. Bagherpour, A.A. Noora and A.H. Vencheh, 2011. A new approach for solving fuzzy critical path problem using analysis of events. Exp. Syst. Appl., 38: 87-93.
CrossRef  |  Direct Link  |  

Zimmerman, H.I., 1991. Fuzzy Set Theory and its Applications. 7th Edn., Academic Publishers, Boston, MA.

Design and power by Medwell Web Development Team. © Medwell Publishing 2023 All Rights Reserved