Search in Medwell
 
 
Research Journal of Applied Sciences
Year: 2015 | Volume: 10 | Issue: 7 | Page No.: 284-286
DOI: 10.36478/rjasci.2015.284.286  
Some Notes on the 3-Factor Analysis of 9x9 Sudoku
H.I. Okagbue, M.O. Adamu, P.E. Oguntunde and A.A. Opanuga
 
References
Bailey, R.A., P.J. Cameron and R. Connelly, 2008. Sudoku, gerechte designs, resolutions, affine space, spreads, reguli and hamming codes. Am. Math. Mon., 115: 383-404.
Direct Link  |  

Crawford, B., C. Castro and E. Monfroy, 2009. Solving Sudoku With Constraint Programming. In: Cutting-Edge Research Topics on Multiple Criteria Decision Making, Shi, Y., S. Wang, Y. Peng, J. Li and Y. Zeng (Eds.)., Springer, Berlin, Germany, ISBN: 978-3-642-02297-5, pp: 345-348.

Dabbaghian, V. and T. Wu, 2013. Recursive construction of non-cyclic pandiagonal Latin squares. Discrete Math., 313: 2835-2840.
CrossRef  |  Direct Link  |  

Delahaye, J.P., 2006. The science behind sudoku Sci. Am., 294: 80-87.
CrossRef  |  Direct Link  |  

Deng, X.Q. and Y.D. Li, 2013. A novel hybrid genetic algorithm for solving sudoku puzzles. Optim. Lett., 7: 241-257.
Direct Link  |  

Emanouilidis, E., 2008. Latin and cross Latin squares. Int. J. Math. Educ. Sci. Technol., 39: 697-700.
Direct Link  |  

Fontana, R., 2014. Random Latin squares and sudoku designs generation. Electron. J. Stat., 8: 883-893.
Direct Link  |  

Gabor, A.F. and G.J. Woeginger, 2010. How not to solve a sudoku. Oper. Res. Lett., 38: 582-584.
Direct Link  |  

Kuhl, J.S. and T. Denley, 2012. A few remarks on avoiding partial Latin squares. Ars. Comb.,

Kumar, A., V. Varghese, E. Varghese and S. Jaggi, 2015. On the construction of designs with three-way blocking. Model Assisted Stat. Appl., 10: 43-52.

Semeniuk, I., 2005. Stuck on you. New Sci., 188: 45-47.

Subramani, J. and K.N. Ponnuswamy, 2009. Construction and analysis of sudoku designs. Model Assisted Stat. Appl., 4: 287-301.