International Journal of Soft Computing

Year: 2009
Volume: 4
Issue: 3
Page No. 131 - 135

Cryptanalysis of a Feistel Type Block Cipher by Feed Forword Neural Network Using Right Sigmoidal Signals

Authors : K.V. Srinivasa Rao , M. Rama Krishna and D. Bujji Babu

References

Allan, P., 1999. Approximation theory of the MLP model in neural networks. Acta Numerica, 8: 143-195.
CrossRef  |  

Barron, A.R., 1993. Universal approximation bounds for super positions of a sigmoidal function. IEEE Trans. Inform. Theory, 39: 930-945.
CrossRef  |  Direct Link  |  

Baurn, E.B., 1988. On the capabilities of multilayer perceptrons. J. Complexity, 4: 193-215.

Biham, E. and A. Shamir, 2002. Differential cryptanalysis of DES like cryptosystems. J. Cryptologsis, 36: 189-221.

Feistel, H., 1973. Cryptography and computer privacy. Sci. Am., 228: 15-23.
CrossRef  |  Direct Link  |  

Ling, Z.B.Z., 1999. A geometrical representation of McCulloch-Pitts neural model and its applications neural networks. IEEE. Trans. Neural Networks, 10: 925-927.

McCulloch, W.S. and W. Pitts, 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5: 115-133.
CrossRef  |  Direct Link  |  

Ramakrishnan, M., C.M. Velu, N. Prabakaran, K. Ekambavanan, P. Thangavelu and P. Vivek-anandan, 2006. Function approximation using feedforward Neural Networks with sigmoidal signals. Int. J. Soft Comput., 1: 76-82.

William, S., 2003. Cryptography and Network Security. 3rd Edn., Prentice Hall, UK.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved