Journal of Animal and Veterinary Advances

Year: 2009
Volume: 8
Issue: 4
Page No. 755 - 759

Avian Cationic Antimicrobial Peptides in Health and Disease: A Mini Review

Authors : Omar Bennoune , Mohamed Melizi , Kamel Khazal and Romyla Bourouba

References

Aarbiou, J., R.M. Verhoosel, S. van Wetering, W.I. de Boer and J.H.J.M. van Krieken et al., 2004. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol., 30: 193-201.
PubMed  |  

Bals, R. and P.S. Hiemstra, 2004. Innate immunity in the lung: How epithelial cells fight against respiratory pathogens? Eur. Respir. J., 23: 327-333.
PubMed  |  

Befus, A.D., C. Mowat, M., Hu, J. Gilchrist, S. Solomon and A. Bateman, 1999. Neutrophil defensins induce histamine secretion from mast cells: Mechanisms of action. J. Immunol., 163: 947-953.
PubMed  |  

Brockus, C.W., M.W. Jackwood and B.G. Harmon, 1998. Characterization of β-defensin prepropeptide mRNA chicken and turkey bone marrow. Anim. Genet., 29: 283-289.
PubMed  |  

Brune, K. and J.K. Spitznagel, 1973. Peroxidaseless chicken leukocytes: Isolation and characterization of antibacterial granules. J. Infect. Dis., 127: 84-94.
PubMed  |  

Brune, K., M.S. Leffell and J.K. Spitznagel, 1972. Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infect. Immunol., 5: 283-287.
PubMed  |  

Chanock, S.J. and C.B. Foster, 1999. SNPing away at innate immunity. J. Clin. Invest., 104: 369-370.
PubMed  |  

Conlon, P., S. Dale and T. Gowlett, 1991. Oxygen radical production by avian leukocytes. Can. J. Vet. Res., 55: 193-195.
PubMed  |  

Evans, E.W., G.G. Beach, J. Wunderlich and G.B. Harmon, 1994. Isolation of antimicrobial from avian heterophils. J. Leukocyte Biol., 56: 661-665.
PubMed  |  

Evans, W.E., F.G. Beach, K.M. Moore, M.W. Jackwood, J.R. Glisson and B.G. Harmon, 1995. Antimicrobial activity of chicken and Turkey heterophil peptides CHP1, CHP2, THP1 and THP3. Vet. Microbiol., 47: 295-303.
PubMed  |  

Fujiwara, S., J. Imai, M. Fujiwara, T. Yaeshima, T. Kawashima and K. Kobayashi, 1990. A potent antibacterial protein in Royal Jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem., 265: 11333-11337.
PubMed  |  Direct Link  |  

Gudmundsson, G.H. and B. Agerberth, 1999. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J. Immunol. Methods, 232: 45-54.
PubMed  |  

Hancock, R.E.W. and D.S. Chapple, 1999. Peptide antibiotics. Antimicrob. Agents Chemother., 43: 1317-1323.
CrossRef  |  Direct Link  |  

Hancock, R.E.W. and G. Diamond, 2000. The role of cationic antimicrobial peptide in innate host defences. Trends Microbiol., 8: 402-410.
PubMed  |  

Hancock, R.E.W. and M.G. Scott, 2000. The role of antimicrobial peptides in animal defense. Proc. Natl. Acad. Sci. USA., 97: 8856-8861.
Direct Link  |  

Hancock, R.E.W., T. Falla and M. Brown, 1995. Cationic bactericidal peptides. Adv. Microb. Physiol., 37: 135-175.
PubMed  |  

Harmon, B.G., 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci., 77: 972-977.
CrossRef  |  PubMed  |  Direct Link  |  

Harmon, B.G., J.R. Glisson and J.C. Nunally, 1992. Turkey macrophage and heterophil bactericidal activity against pasteurella multocida. Avian Dis., 36: 986-991.
PubMed  |  

Harwig, S.S.L., K.M. Swiderek, V.N. Kokryakov, L. Tan and T.D. Lee et al., 1994. Gallinacins: Cysteine-rich antimicrobial peptides of chicken leukocytes. Fed. Eur. Biochem. Soc. Lett., 342: 281-285.
PubMed  |  

Hristova, K., M.E. Selsted and S.H. White, 1997. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem., 272: 24224-24233.
PubMed  |  

Huttner, K.M. and C.L. Bevins, 1999. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res., 45: 785-794.
PubMed  |  

Kourie, J.I. and A.A. Shorthouse, 2000. Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. Cell Physiol., 278: 1063-1087.
PubMed  |  

Lehrer, R.I., K. Daher, T. Ganz and M.E. Selsted, 1985. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J. Virol., 54: 467-472.
PubMed  |  

Lynn, D.J., R. Higgs, A.T. Lloyd, C. O'Farrelly and V. Herve-Grepinet et al., 2007. Avian β-defensin nomenclature: A community proposed update. Immunol. Lett., 110: 86-89.
PubMed  |  

Mageed, A.M.A., N. Isobe and Y. Yoshimura, 2008. Expression of avian β-defensins in the oviduct and effects of lipopolysaccharide on their expression in the Vagina of hens. Poult. Sci., 87: 979-984.
PubMed  |  

Miyakawa, Y., P. Ratnakar, A.G. Rao, M.L. Costello, O. Matieu-Costello, R.I. Lehrer and A. Catanzaro, 1996. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against mycobacterium tuberculosis. Infect. Immunol., 64: 926-932.
PubMed  |  

Namavar, F., A.M. Verweij-Van-Vught, W.A. Vel, M. Bal and D.M. MacLaren, 1984. Polymorphonuclear leukocyte chemotaxis by mixed anaerobic and aerobic bacteria. J. Med. Microbiol., 18: 167-172.
PubMed  |  

Penniall, R. and J.K. Spitznagel, 1975. Chicken neutrophils: Oxidative metabolism in phagocytic cells devoid of myeloperoxidase. Proc. Natl. Acad. Sci. USA., 72: 5012-5015.
PubMed  |  

Scott, M., A.C.E. Vreugdenhil, W.A. Buurman, R.E.W. Hancock and M.R. Gold, 2000. Cutting edge: Cationic antimicrobial peptides block the binding of Lipopolysaccharide (LPS) to LPS binding protein. J. Immunol., 164: 549-553.
PubMed  |  

Selsted, M.E., D.M. Brown, R.J. DeLange and R.I. Lehrer, 1983. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J. Biol. Chem., 258: 14485-14489.
PubMed  |  

Styrt, B., 1989. Species variation in neutrophil biochemistry and function. J. Leukocyte Biol., 46: 63-74.
PubMed  |  

Tencza, S.B., J.P. Douglass, D.J.Jr. Creighton, R.C. Montelaro and T.A. Mietzner, 1997. Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins. Antimicrob. Agents Chemother., 41: 2394-2398.
PubMed  |  Direct Link  |  

Townes, C.L., G. Michailidis, C.J. Nile and J. Hall, 2004. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immunol., 72: 6987-6993.
CrossRef  |  PubMed  |  Direct Link  |  

Valore, E.V., E. Martin, S.S.L. Harwig and T. Ganz, 1996. Intramolecular inhibition of human defensin HNP-1 by its propiece. J. Clin. Invest., 97: 1624-1629.
PubMed  |  

Van Dijk, A., E.J.A. Veldhuizen, S.I.C. Kalkhove, J.L.M. Tjeerdsma van Bokhoven, R.A. Romijn and H.P. Haagsman, 2007. The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother., 51: 912-922.
PubMed  |  

Vel, W.A.C., F. Namavar, A.M.J. Werweij, A.N.B. Pubben and D.M. MacLaren, 1984. Killing capacity of human polymorphonuclear leukocytes in aerobic and anaerobic conditions. J. Med. Microbiol., 18: 173-180.
PubMed  |  

Wehkamp, J., M. Schmid, K. Fellermann and E.F. Stange, 2005. Defensin deficiency, intestinal microbes and the clinical phenotypes of Crohns disease. J. Leukocyte Biol., 77: 460-465.
PubMed  |  

Zhao, C., T. Nguyen, L. Liu, R.E. Sacco, K.A. Brogden and R.I. Lehrer, 2001. Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infect. Immunol., 69: 2684-2691.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved