Journal of Animal and Veterinary Advances

Year: 2011
Volume: 10
Issue: 12
Page No. 1516 - 1522

A Mercury Displacement Method to Measure Fish Feed Density

Authors : Huriye Ariman Karabulut and Ilhan Yandi

References

ASTM, 1982. Standard test method for bulk density and porosity of granular refractory materials by mercury displacement. ASTM C493-70, Annual Book of ASTM Standards. Part 17.

Chen, Y.S., M.C.M. Beveridge and T.C. Telfer, 1999. Physical characteristics of commercial pelleted atlantic salmon feeds and consideration of implications for modeling of waste dispersion through sedimentation. Aquacult. Int., 7: 89-100.
CrossRef  |  

Chhabra, R.P., L. Agarwal and N.K. Sinha, 1999. Drag on non-spherical particles: An evaluation of available methods. Powder Technol., 101: 288-295.
CrossRef  |  

Cromey, C.J., T.D. Nickell and K.D. Black, 2002. DEPOMOD-modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture, 214: 211-239.
CrossRef  |  

Dismuke, S.E. and R.L. Stone, 1967. A vacuum pycnometer using mercury with plunger displacement for a hot cell use. Oak Ridge National Laboratory Report ORNL. TM-1743.

Elberizon, I.R. and L.A. Kelly, 1998. Empirical measurements of parameters critical to modelling benthic impacts of freshwater salmonid cage aquaculture. Aquacult. Res., 29: 669-677.
CrossRef  |  

Findlay, R.H. and L. Wattling, 1994. Towards a Process Level Model to Predict the Effect of Salmon Net-Pen Aquaculture on the Benthos. In: Modelling Benthic Impactsof Organic Enrichment from Marine Agriculture, By Hargrave, B.T. (Ed.). Canadian Technical Report of Fisheries and Aquatic Society, Canada, pp: 47-77.

Franzini, M. and M. Lezzerini, 2003. A mercury-displacement method for stone bulk-density determinations. Eur. J. Mineral., 15: 225-229.
CrossRef  |  

Gabitto, J. and C. Tsouris, 2008. Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol., 183: 314-322.
CrossRef  |  

Isaacs, J.L. and G. Thodos, 1967. The free-settling of solid cylindrical particles in the turbulent regime. Can. J. Chem. Eng., 45: 150-155.
CrossRef  |  

Karabulut, H.A. and I. Yandi, 2011. A theoretical approach to settling velocities of fish feed pellets. Aquacult. Res., (In Press).

Knight, N.C., 1983. Measurement and interpretation of hailstone density and terminal velocity. J. Atmospheric Sci., 40: 1510-1516.
CrossRef  |  

Loth, E., 2008. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol., 182: 342-353.
CrossRef  |  

Piedecausa, M.A., F. Aguado-Gimenez, B. Garcia-Garcia, G. Ballester and T. Telfer, 2009. Settling velocity and total ammonia nitrogen leaching from commercial feed and faecal pellets of gilthead seabream (Sparus aurata L. 1758) and seabass (Dicentrarchus labrax L. 1758). Aquacult. Res., 40: 1703-1714.
CrossRef  |  Direct Link  |  

Snel, R., 1984. A simple, inexpensive microvolumeter for the determination of the apparent density of fine, highly porous particles in a powder. J. Phys. E: Sci. Instruments, 17: 342-344.
CrossRef  |  

Sutherland, T.F., C.L. Amos, C. Ridley, I.G. Droppo and S.A. Petersen, 2006. The settling behavior and benthic transport of fish feed pellets under steady flows. Estuaries Coasts, 29: 810-819.
CrossRef  |  

Vassallo, P., A.M. Doglioli, F. Rinaldi and I. Beiso, 2006. Determination of physical behaviour of feed pellets in Mediterranean water. Aquacult. Res., 37: 119-126.
CrossRef  |  

Winter, T.G., 2003. The evaporation of a drop of mercury. Am. J. Phys., 71: 783-786.
CrossRef  |  

Yamagishi, S. and Y. Takahashi, 1992. Improved mercury pycnometry for measuring accurate volumes of solid materials. Measurement Sci. Technol., 3: 270-274.
CrossRef  |  

Yamagishi, S., Y. Takahashi and K. Shiba, 1984. An accurate method for determining the small volumes of granular solids by mercury pycnometry. J. Phys. E: Sci. Instruments, 17: 339-341.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved