Journal of Animal and Veterinary Advances

Year: 2011
Volume: 10
Issue: 20
Page No. 2624 - 2630

Effects of Different CO2 Levels on Chicken Embryonic Development During Early Stage of Incubation

Authors : Hongbing Han, Xiang Li, Kun Yu and Zhengxing Lian

References

Becker, W.A., J.V. Spencer and J.L. Swartwood, 1968. Carbon dioxide during storage of chicken and turkey hatching eggs. Poult. Sci., 47: 251-258.
PubMed  |  Direct Link  |  

Benton, C.E. and J. Brake, 1996. The effect of broiler breeder flock age and length of egg storage on egg albumen during early incubation. Poult. Sci., 75: 1069-1075.
CrossRef  |  

Birchard, G.F. and C.L. Reiber, 1996. Heart rate during development in the turtle embryo: Effect of temperature. J. Comp. Physiol. B, 166: 461-466.
PubMed  |  Direct Link  |  

Bruggeman, V., A. Witters, L. De Smit, M. Debonne and N. Everaert et al., 2007. Acid-base balance in chicken embryos (Gallus domesticus) incubated under high CO2 concentrations during the first 10 days of incubation. Respir. Physiol. Neurobiol., 159: 147-154.
PubMed  |  Direct Link  |  

Cotterill, O.J. and A.W. Nordskog, 1954. Influence of ammonia on egg white quality. Poult. Sci., 33: 432-434.

De Smit, L., V. Bruggeman, K. Tona, M. Debonne and O. Onagbesan et al., 2006. Embryonic development plasticity of the chick: Increased CO2 during early stages of incubation changes the developmental trajectories during prenatal and postnatal growth. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 145: 166-175.
CrossRef  |  

Dzialowski, E.M., D. von Plettenberg, N.A. Elmonoufy and W.W. Burggren, 2002. Chronic hypoxia alters the physiological and morphological trajectories of developing chicken embryos. Comp. Biochem. Phys. A: Mol. Integr. Physiol., 131: 713-724.
PubMed  |  Direct Link  |  

Hamburger, V. and H.L. Hamilton, 1951. A series of normal stages in the development of chick embryo. J. Morphol., 88: 49-92.
CrossRef  |  PubMed  |  Direct Link  |  

Haring, O.M., J.R. Patterson and M.A. Sarche, 1970. Prenatal development of the cardiovascular system in the chicken. Arch. Pathol., 89: 537-547.
PubMed  |  Direct Link  |  

Hogg, A., 1997. Single stage incubation trails. Poult. Avian Biol. Rev., 8: 168-178.

Holtfreter, J., 1944. A study of the mechanics of gastrulation part II. J. Exp. Zool., 95: 171-212.

Jun, Y., 2005. Cardiovascular Cell Differentiation from ES Cells. Springer, Tokyo, Japan, pp: 67-80.

Kubota, H.Y. and A.J. Durston, 1978. Cinematographical study of cell migration in the open gastrula of Amblystoma mexicanum. J. Embryol. Exp. Morphol., 44: 71-80.
PubMed  |  Direct Link  |  

Le Noble, F., D. Moyon, L. Pardanaud, L. Yuan and V. Djonov et al., 2004. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development, 131: 361-375.
CrossRef  |  Direct Link  |  

Mayes, F. and M.A. Takeballi, 1987. Microbial contamination of the hen's egg: A review. J. Food Prot., 46: 1092-1098.

Meuer, H.J., U. Sieger and R. Baumann, 1989. Measurement of pH in blood vessels and interstitium of 4 and 6 days-old chick embryos. J. Dev. Physiol., 11: 354-359.
PubMed  |  Direct Link  |  

Rahn, H. and A. Ar, 1980. Gas exchange of the avian egg: Time, structure and function. Am. Zool., 20: 477-484.
CrossRef  |  Direct Link  |  

Rahn, H., 1981. Gas exchange of avian eggs with special reference to Turkey eggs. Poult. Sci., 60: 1971-1980.
CrossRef  |  Direct Link  |  

Risau, W. and I. Flamme, 1995. Vasculogenesis. Ann. Rev. Cell Dev. Biol., 11: 73-91.
PubMed  |  Direct Link  |  

Romanoff, A.L. and A.J. Romanoff, 1949. The Avian Egg. John Wiley and Sons Inc., New York.

Rubin, H., 1971. pH and population density in the regulation of animal cell multiplication. J. Cell Biol., 51: 686-702.
PubMed  |  Direct Link  |  

Sadler, W.W., H.S. Wilgus and E.G. Buss, 1954. Incubation factors affecting hatchability of poultry eggs. Poult. Sci., 33: 1108-1115.

Stern, C.D., 1991. The Sub-Embryonic Fluid of the Egg of the Domestic Fowl and its Relationship to the Early Development of the Embryo. In: Avian Incubation, Tullett, S.G. (Ed.). Butterworth-Heinemann, London, UK., pp: 81-90.

Taylor, L.W. and G.O. Kreutziger, 1965. The gaseous environment of the chick embryo in relation to its development and hatchability. 2. Effect of carbon dioxide and oxygen levels during the period of the fifth through the eighth days of incubation. Poult. Sci., 44: 98-106.
PubMed  |  Direct Link  |  

Taylor, L.W. and G.O. Kreutziger, 1966. The gaseous environment of the chick embryo in relation to its development and hatchability. 3. Effect of carbon dioxide and oxygen levels during the period of the ninth through the twelfth days of incubation. Poult. Sci., 45: 867-884.

Taylor, L.W., R.A. Sjodin and C.A. Gunns, 1956. The gaseous environment of the chick embryo in relation to its development and hatchability. 1. Effect of carbon dioxide and oxygen levels during the first four days of incubation upon hatchability. Poult. Sci., 35: 1206-1215.

Tona, K., F. Bamelis, K.B. De Ketelaere, V. Bruggeman and E. Decuypere, 2002. Effect of induced molting on albumen quality, hatchability and chick body weight from broiler breeders. Poult. Sci., 81: 327-332.
CrossRef  |  Direct Link  |  

Walsberg, G.E., 1980. The gaseous microclimate of the avian nest during incubation. Am. Zool., 20: 363-372.
CrossRef  |  Direct Link  |  

Walter, R.J. and P.K. Gaetano, 1985. Cell locomotion and chemotaxis in 3T3, SV3T3 and ras-3T3 cells: pH effects. Anat. Rcc., 211: 209A-209A.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved