Journal of Animal and Veterinary Advances

Year: 2012
Volume: 11
Issue: 21
Page No. 3957 - 3968

The Characteristics of Context-Dependent Codon Usage Bias for Cleavage Sites in the Polyprotein of Foot and Mouth Disease Virus

Authors : Jun-Lin Liu, Xiao-Xia Ma, Shi-En Che, Ji-Ying Xu, Yi-Xia Chen, Zhuo Li, Yu-Ping Fen, Ju-Tian Yang, Hong Chen and Sheng-Dong Huo

References

Alff-Steinberger, C. and R. Epstein, 1994. Codon preference in the terminal region of E. coli genes and evolution of stop codon usage. J. Theor. Biol., 168: 461-463.
PubMed  |  

Andersson, G.E. and P.M. Sharp, 1996. Codon usage in the Mycobacterium tuberculosis complex. Microbiol., 142: 915-925.
PubMed  |  Direct Link  |  

Arnold, E., M. Luo, G. Vriend, M.G. Rossmann and A.C. Palmenberg, 1987. Implications of the picornavirus capsid structure for polyprotein processing. Proc. Natl. Acad. Sci. USA., 84: 21-25.
Direct Link  |  

Bablanian, G.M. and M.J. Grubman, 1993. Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology, 197: 320-327.
PubMed  |  

Belsham, G.J., 1992. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J., 11: 1105-1110.
Direct Link  |  

Bonekamp, F., H.D. Andersen, T. Christensen and K.F. Jensen, 1985. Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation. Nucleic. Acids Res., 13: 4113-4123.
Direct Link  |  

Brown, C.M., M.E. Dalphin, P.A. Stockwell and W.P. Tate, 1993. The translational termination signal database. Nucleic Acids Res., 21: 3119-3123.
Direct Link  |  

Brown, C.M., P.A. Stockwell, M.E. Dalphin and W.P. Tate, 1994. The translational termination signal database (TransTerm) now also includes initiation contexts. Nucleic Acids Res., 22: 3620-3624.

Cao, X., I.E. Bergmann, R. Fullkrug and E. Beck, 1995. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J. Virol., 69: 560-563.
Direct Link  |  

Carrillo, C., E.R. Tulman, G. Delhon, Z. Lu and A. Carreno et al., 2005. Comparative genomics of foot-and-mouth disease virus. J. Virol., 79: 6487-6504.
CrossRef  |  Direct Link  |  

Chavancy, G. and J.P. Garel, 1981. Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translation efficiency? Proposal for a translation system model. Biochimie, 63: 187-195.
PubMed  |  Direct Link  |  

Chen, G.F. and M. Inouye, 1990. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res., 18: 1465-1473.

Clarke, B.E. and D.V. Sangar, 1988. Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. J. Gen. Virol., 69: 2313-2325.
PubMed  |  

Cooke, J.N. and K.M. Westover, 2008. Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): A comprehensive statistical analysis. Infect Genet. Evol., 8: 855-863.
CrossRef  |  PubMed  |  Direct Link  |  

Curry, S., C.C. Abrams, E. Fry, J.C. Crowther, G.J. Belsham, D.I. Stuart and A.M. King, 1995. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J. Virol., 69: 430-438.
PubMed  |  Direct Link  |  

Curry, S., E. Fry, W. Blakemore, R. Abu-Ghazaleh and T. Jackson et al., 1997. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: The structure of empty capsids of foot-and-mouth disease virus. J. Virol., 71: 9743-9752.
Direct Link  |  

De Quinto, S.L., M. Saiz, D. de la Morena, F. Sobrino and E. Martinez-Salas, 2002. IRES-driven translation is stimulated separately by the FMDV 3'-NCR and poly(A) sequences. Nucleic Acids Res., 30: 4398-4405.
CrossRef  |  PubMed  |  Direct Link  |  

Donnelly, M.L., D. Gani, M. Flint, S. Monaghan and M.D. Ryan, 1997. The cleavage activities of aphthovirus and cardiovirus 2A proteins. J. Gen. Virol., 78: 13-21.

Donnelly, M.L., G. Luke, A. Mehrotra, X. Li, L.E. Hughes, D. Gani and M.D. Ryan, 2011. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction but a novel translational effect: A putative ribosomal 'skip'. J. Gen. Virol., 82: 1013-1025.
Direct Link  |  

Donnelly, M.L., L.E. Hughes, G. Luke, H. Mendoza, E. ten Dam, D. Gani and M.D. Ryan, 2001. The cleavage activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring 2A-like sequences. J. Gen. Virol., 82: 1027-1041.
PubMed  |  Direct Link  |  

Gouy, M. and C. Gautier, 1982. Codon usage in bacteria: Correlation with gene expressivity. Nucleic Acids Res., 10: 7055-7074.
Direct Link  |  

Grubman, M.J. and B. Baxt, 2004. Foot-and-mouth disease. Clin. Microbiol. Rev., 17: 465-493.
CrossRef  |  PubMed  |  Direct Link  |  

Grubman, M.J., M.P. Moraes, F.D.S. Segundo, L. Pena and T. De Los Santos, 2008. Evading the host immune response: How foot-and-mouth disease virus has become an effective pathogen. FEMS Immunol Med. Microbiol., 53: 8-17.
CrossRef  |  PubMed  |  

Harber, J.J., J. Bradley, C.W. Anderson and E. Wimmer, 1991. Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J. Virol., 65: 326-334.
Direct Link  |  

Hooper, S.D. and O.G. Berg, 2000. Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic Acids Res., 28: 3517-3523.
Direct Link  |  

Jackson, A.L., H. O'Neill, F. Maree, B. Blignaut, C. Carrillo, L. Rodriguez and D.T. Haydon, 2007. Mosaic structure of foot-and-mouth disease virus genomes. J. Gen. Virol., 88: 487-492.
PubMed  |  

Joern, K., 2009. Understanding the molecular epidemiology of foot-and-mouth-disease virus. Infect. Genet. Evol., 9: 153-161.
Direct Link  |  

Kudla, G., A.W. Murray, D. Tollervey and J.B. Plotkin, 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science, 324: 255-258.
CrossRef  |  Direct Link  |  

Lee, W.M., S.S. Monroe and R.R. Rueckert, 1993. Role of maturation cleavage in infectivity of picornaviruses: Activation of an infectosome. J. Virol., 67: 2110-2122.
PubMed  |  Direct Link  |  

Lewis-Rogers, N., D.A. McClellan and K.A. Crandall, 2008. The evolution of foot-and-mouth disease virus: Impacts of recombination and selection. Infect. Genet. Evol., 8: 786-798.
CrossRef  |  PubMed  |  

Lloyd, A.T. and P.M. Sharp, 1992. Evolution of codon usage patterns: The extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res., 20: 5289-5295.
Direct Link  |  

Medina, M., E. Domingo, J.K. Brangwyn and G.J. Belsham, 1993. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology, 194: 355-359.
PubMed  |  

Miyasaka, H., 1999. The positive relationship between codon usage bias and translation initiation AUG context in Saccharomyces Cerevisiae. Yeast, 15: 633-637.
PubMed  |  

Ohno, H., H. Sakai, T. Washio and M. Tomita, 2001. Preferential usage of some minor codons in bacteria. Gene, 276: 107-115.
PubMed  |  

Pan, A., C. Dutta and J. Das, 1998. Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Genetics, 215: 405-413.
PubMed  |  Direct Link  |  

Pariente, N., A. Airaksinen and E. Domingo, 2003. Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J. Virol., 77: 7131-7138.
PubMed  |  Direct Link  |  

Robinson, M., R. Lilley, S. Little, J.S. Emtage and G. Yarranton et al., 1984. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res., 12: 6663-6671.
Direct Link  |  

Ryan, M.D. and J. Drew, 1994. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artifical polyprotein. EMBO J., 13: 928-933.
Direct Link  |  

Ryan, M.D., A.M. King and G.P. Thomas, 1991. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol., 72: 2727-2732.

Sau, K., S.K. Gupta, S. Sau, S.C. Mandal and T.C. Ghosh, 2006. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems, 85: 107-113.

Sharp, P.M. and M. Bulmer, 1988. Selective differences among translation termination codons. Genet., 63: 141-145.
PubMed  |  Direct Link  |  

Sharp, P.M., T.M. Tuohy and K.R. Mosurski, 1986. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res., 14: 5125-5143.
Direct Link  |  

Sorensen, M.A., C.G. Kurland and S. Pedersen, 1989. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol., 207: 365-377.
PubMed  |  Direct Link  |  

Vakharia, V.N., M.A. Devaney, D.M. Moore, J.J. Dunn and M.J. Crubman, 1987. Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. J. Virol., 61: 3199-3207.
Direct Link  |  

Varenne, S., J. Buc, R. Lloubes and C. Lazdunski, 1984. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol., 180: 549-576.
Direct Link  |  

Zhou, J., J. Zhang, Y. Ding, H. Chen, L. Ma and Y. Liu, 2010. Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems, 101: 20-28.
CrossRef  |  

Zhou, J.H., J. Zhang, H.T. Chen, L.N. Ma and Y.S. Liu, 2010. Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet. Res. Commun., 34: 393-404.

Zhou, J.H., J. Zhang, H.T. Chen, L.N. Ma, Y.Z. Ding, Z. Pejsak and Y.S. Liu, 2011. The codon usage model of the context flanking each cleavage site in the polyprotein of foot-and-mouth disease virus. Infect Genet Evol., 11: 1815-1819.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved