Journal of Animal and Veterinary Advances

Year: 2013
Volume: 12
Issue: 10
Page No. 1000 - 1006

Effects of Exogenous Fibrolytic Enzyme on in vitro Ruminal Fermentation and Microbial Populations of Substrates with Different Forage to Concentrate Ratios

Authors : Chao-Yun Li, Yang-Chun Cao, Shi-Zhao Li, Ming Xu, Chan-Juan Liu, Zhi-Peng Yu, Xiang-Hui Zhao and Jun-Hu Yao

References

AOAC., 1995. Official Methods of Analysis. 16th Edn., Association of Official Analytical Chemists, Washington, DC., USA.

Arriola, K.G., S.C. Kim, C.R. Staples and A.T. Adesogan, 2011. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. J. Dairy Sci., 94: 832-841.
CrossRef  |  Direct Link  |  

Aufrere, J., D. Graviou and C. Demarquilly, 2003. Ruminal degradation of protein of cocksfoot and perennial ryegrass as affected by various stages of growth and conservation methods. Anim. Res., 52: 245-261.
CrossRef  |  

Beauchemin, K.A., D. Colombatto, D.P. Morgavi and W.Z. Yang, 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci., 81: E37-E47.
Direct Link  |  

Beauchemin, K.A., L.M. Rode, M. Maekawa, D.P. Morgavi and R. Kampen, 2000. Evaluation of a nonstarch polysaccharidase feed enzyme in dairy cow diets. J. Dairy Sci., 83: 543-553.
CrossRef  |  Direct Link  |  

Chung, Y.H., M. Zhou, L. Holtshausen, T.W. Alexander and T.A. McAllister et al., 2012. A fibrolytic enzyme additive for lactating Holstein cow diets: Ruminal fermentation, rumen microbial populations and enteric methane emissions. J. Dairy Sci., 95: 1419-1427.
CrossRef  |  PubMed  |  Direct Link  |  

Dehghani, M.R., K. Rezayazdi, M. Dehghan-Banadaky and H. Mansoori, 2011. Effects of fibrolytic enzyme on milk yield, blood metabolites, rumen microbial growth and pH of Holstein cows in early lactation. J. Anim. Vet. Adv., 10: 3048-3052.

Denman, S.E. and C.S. McSweeney, 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol., 58: 572-582.
CrossRef  |  Direct Link  |  

Denman, S.E., N.W. Tomkins and C.S. McSweeney, 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol., 62: 313-322.
CrossRef  |  PubMed  |  Direct Link  |  

Dong, Y., H.D. Bae, T.A. McAllister, G.W. Mathison and K.J. Cheng, 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim. Sci., 79: 491-498.
CrossRef  |  Direct Link  |  

Elwakeel, E.A., E.C. Titgemeyer, B.J. Johnson, C.K. Armendariz and J.E. Shirley, 2007. Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs. J. Dairy Sci., 90: 5226-5236.
CrossRef  |  Direct Link  |  

Feng, P., C.W. Hunt, G.T. Pritchard and W.E. Julien, 1996. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci., 74: 1349-1357.
Direct Link  |  

Gado, H.M., A.Z.M. Salem, P.H. Robinson and M. Hassan, 2009. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol., 154: 36-46.
CrossRef  |  Direct Link  |  

Garcia-Martinez, R., M.J. Ranilla, M.L. Tejido and M.D. Carro, 2005. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: Concentrate ratio. Br. J. Nutr., 94: 71-77.
Direct Link  |  

Getachew, G., P.H. Robinson, E.J. DePeters and S.J. Taylor, 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol., 111: 57-71.
CrossRef  |  

Giraldo, L.A., M.L. Tejido, M.J. Ranilla and M.D. Carro, 2007. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. J. Anim. Sci., 85: 1962-1970.
CrossRef  |  Direct Link  |  

Giraldo, L.A., M.L. Tejido, M.J. Ranilla and M.D. Carro, 2008. Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: Concentrate ratios. Anim. Feed Sci. Technol., 141: 306-325.
CrossRef  |  Direct Link  |  

Giraldo, L.A., M.L. Tejido, M.J. Ranilla, S. Ramos and M.D. Carro, 2008. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci., 86: 1617-1623.
CrossRef  |  PubMed  |  

Gonzalez-Garcia, E., E. Albanell, G. Caja and R. Casals, 2010. In vitro fermentative characteristics of ruminant diets supplemented with fibrolytic enzymes and ranges of optimal endo-β-1,4-glucanase activity. J. Anim. Physiol. Anim. Nutr., 94: 250-263.
CrossRef  |  Direct Link  |  

Hodgson, J.C. and P.C. Thomas, 1975. A relationship between the molar proportion of propionic acid and the clearance rate of the liquid phase in the rumen of the sheep. Br. J. Nutr., 33: 447-456.
Direct Link  |  

Homan, E.J. and M.A. Wattiaux, 1996. Technical Dairy Guide in Print-Lactation and Milking. Babcock Institute for International Dairy Research and Development, Madison, Wisconsin, USA., Pages: 101.

Hoover, W.H. and S.R. Stokes, 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci., 74: 3630-3644.
CrossRef  |  PubMed  |  Direct Link  |  

Hristov, A.N., L.M. Rode, K.A. Beauchemin and R.L. Wuerfel, 1996. Effect of a commercial enzyme preparation on barley silage in vitro and in situ dry matter degradability. Proc. West. Sect. Am. Soc. Anim. Sci., 47: 282-284.

Hu, W.L., J.X. Liu, J.A. Ye, Y.M. Wu and Y.Q. Guo, 2005. Effect of tea saponin on rumen fermentation In vitro. Anim. Feed Sci. Technol., 120: 333-339.
CrossRef  |  Direct Link  |  

Kobayashi, Y., 2010. Abatement of methane production from ruminants: Trends in the manipulation of rumen fermentation. Asian-Aust. J. Anim. Sci., 23: 410-416.
Direct Link  |  

Menke, K.H. and H. Steingass, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28: 7-55.
Direct Link  |  

Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider, 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci., 93: 217-222.
CrossRef  |  Direct Link  |  

Murad, H.A. and H.H. Azzaz, 2010. Cellulase and dairy animal feeding. Biotechnology, 9: 238-256.
CrossRef  |  Direct Link  |  

Murray, M.G. and W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res., 8: 4321-4326.
CrossRef  |  PubMed  |  Direct Link  |  

Nsereko, V.L., K.A. Beauchemin, D.P. Morgavi, L.M. Rode and A.F. Furtado et al., 2002. Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Can. J. Microbiol., 48: 14-20.
PubMed  |  Direct Link  |  

Srinivas, B. and B.N. Gupta, 1997. Rumen fermentation, bacterial and total volatile fatty acid (TVFA) production rates in cattle fed on urea-molasses-mineral block licks supplement. Anim. Feed Sci. Technol., 65: 275-286.
CrossRef  |  

Stewart, C.S., H.J. Flint and M.P. Bryant, 1997. The Rumen Bacteria. In: The Rumen Microbial Ecosystem, Hobson, P.N. and C.S. Stewart (Eds.). Chapter 2, Blackie Academic and Professional, London, UK., ISBN: 978-94-010-7149-9, pp: 10-72.

Sylvester, J.T., S.K.R. Karnati, Z. Yu, M. Morrison and J.L. Firkins, 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr., 134: 3378-3384.
Direct Link  |  

Tokura, M., I. Chagan, Y. Kojima and K. Ushida, 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol., 39: 123-128.
PubMed  |  

Torrentera, N., R.A. Ware and R.A. Zinn, 2005. Influence of Maceration and fibrolytic enzymes on the feeding value of rice straw. J. Anim. Vet. Adv., 4: 387-392.
Direct Link  |  

Wang, Y., T.A. McAllister, L.M. Rode, K.A. Beauchemin and D.P. Morgavi et al., 2001. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr., 85: 325-332.
CrossRef  |  PubMed  |  Direct Link  |  

Weatherburn, M.W., 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971-974.
CrossRef  |  Direct Link  |  

Yang, W.Z., K.A. Beauchemin and L.M. Rode, 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci., 82: 391-403.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, W.Z., K.A. Beauchemin and L.M. Rode, 2001. Effects of grain processing, forage to concentrate ratio and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci., 84: 2203-2216.
CrossRef  |  Direct Link  |  

Zhang, C.M., Y.Q. Guo, Z.P. Yuan, Y.M. Wu, J.K. Wang, J.X. Liu and W.Y. Zhu, 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol., 146: 259-269.
CrossRef  |  Direct Link  |  

Zhou, J., M.A. Bruns and J.M. Tiedje, 1996. DNA recovery from soils of diverse composition. Applied Environ. Microbiol., 62: 316-322.
Direct Link  |  

van Soest, P.J., J.B. Robertson and B.A. Lewis, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved