Journal of Animal and Veterinary Advances

Year: 2013
Volume: 12
Issue: 1
Page No. 62 - 68

The Efficacy of Potassium Sorbate and Organic Acids in the Control of Food Spoilage Yeasts

Authors : Mumine Yavuz and Mihriban Korukluoglu

References

Arroyo-Lopez, F.N., J. Bautista-Gallego, M.C. Duran-Quintana and A. Garrido-Fernandez, 2008. Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol., 25: 566-574.
CrossRef  |  PubMed  |  Direct Link  |  

Bayrock, D.P. and W.M. Ingledew, 2004. Inhibition of yeast by lactic acid bacteria in continuous culture: Nutrient depletion and/or acid toxicity. J. Ind. Microbiol. Biotechnol., 31: 362-368.
CrossRef  |  PubMed  |  Direct Link  |  

Betts, G.D., P. Linton and R.J. Betteridge, 1999. Food spoilage yeasts: Effects of pH, NaCl and temperature on growth. Food Control, 10: 27-33.
CrossRef  |  

Booth, I.R. and R.G. Kroll, 1989. The Preservation of Foods by Low pH. In: Mechanisms of Action of Food Preservation Procedures, Gould, D.W. (Ed.). Elsevier, London, UK., pp: 217-236.

Booth, I.R., 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev., 49: 359-378.
Direct Link  |  

Cakmakci, S. and I. Celik, 1994. Gida Katki Maddeleri. Ataturk Universitesi Ziraat Fakultesi Ofset Tesisi, Erzurum.

Casal, M., H. Cardoso and C. Leao, 1996. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology, 142: 1385-1390.
PubMed  |  Direct Link  |  

Casal, M., H. Cardoso and C. Leao, 1998. Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Applied Environ. Microbiol., 64: 665-668.
Direct Link  |  

Cassio, F., C. Leao, N. Van Uden, 1987. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Applied Environ. Microbiol., 53: 509-513.
Direct Link  |  

Chung, K.C. and J.M. Goepfert, 1970. Growth of salmonella at low pH. J. Food Sci., 35: 326-328.
Direct Link  |  

Eklund, T., 1980. Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J. Applied Bacteriol., 48: 423-432.
PubMed  |  Direct Link  |  

Eklund, T., 1989. Organic Acids and Esters. In: Mechanisms of Action of Food Preservation Procedures, Gould, G.W. (Ed.). Elsevier, London, UK., pp: 122-143.

Fialova, J., J. Chumchalova, K. Mikova and I. Hurusova, 2008. Effect of food preservatives on the growth of spoilage lactobacilli isolated from mayonnaise-based sauces. Food Control, 19: 706-713.
CrossRef  |  

Fleet, G.H., 1990. Yeasts in dairy products. J. Applied Bacteriol., 68: 199-211.
CrossRef  |  Direct Link  |  

Fleet, G.H., 1992. Spoilage yeasts. Crit. Rev. Biotechnol., 12: 1-44.
CrossRef  |  PubMed  |  Direct Link  |  

Flores, C.L., C. Rodriguez, T. Petit and C. Gancedo, 2000. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev., 24: 507-529.
CrossRef  |  PubMed  |  Direct Link  |  

Forsythe, S.J., 2004. Microbiologia da Seguranca Alimentar. Artmed, Porto Alegre.

Gould, G.W., 1990. Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, UK., pp: 56-70.

Guldfeldt, L.D. and N. Arneborg, 1998. Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorence microscopy. Applied Environ. Microbiol., 64: 530-534.
PubMed  |  Direct Link  |  

Han, J.H. and J.D. Floros, 1998. Modeling the growth inhibition kinetics of Baker's yeast by potassium sorbate using statistical approaches. J. Food Sci., 63: 12-14.
CrossRef  |  

Ingram, M., F.J.H. Otoway and J.B.M. Coppock, 1956. The preservative action of acid substances in food. Chem. Ind., 42: 1154-1163.

Kasemets, K., A. Ivask, H.C. Dubourguier and A. Kahru, 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro, 23: 1116-1122.
CrossRef  |  

Kawahata, M., K. Masaki, T. Fujii and H. Iefuji, 2006. Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res., 6: 924-936.
CrossRef  |  

Kucukoner, E., 2006. Yeni urun gelistirmede gida katki maddelerinin fonksiyonlari ve onemi [Ingredients functions in new food product development]. Gida, 31: 175-181.
Direct Link  |  

Laubscher, P.J. and B.C. Viljoen, 1999. The resistance of dairy yeasts against commercially available cleaning compounds and sanitizers. Food Technol. Biotechnol., 37: 281-286.
Direct Link  |  

Lawrence, C.L., C.H. Botting, R. Antrobus and P.J. Coote, 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stres. Mol. Cell. Biol., 24: 3307-3323.
CrossRef  |  Direct Link  |  

Levine, A.S. and C.R. Fellers, 1940. Action of acetic acid on food spoilage microorganisms. J. Bacteriol., 39: 499-515.
Direct Link  |  

Loureiro, V. and A. Querol, 1999. The prevelance and control of spoilage yeasts in foods and beverage. Trends Food Sci. Technol., 10: 356-365.
Direct Link  |  

Loureiro, V. and M. Malfeito-Ferreira, 1993. Yeasts in Food Spoilage. In: Encyclopedia of Food Science Technology and Nutrition, Macrae, R., R.K. Robinson and M.J. Sadler (Eds.). Academic Press Limited, London, UK., pp: 4344-4349.

Loureiro, V., 2000. Spoilage yeasts in foods and beverages: Characterisation and ecology for improved diagnosis and control. Food Res. Int., 33: 247-256.
CrossRef  |  

Minor, T.E. and E.H. Marth, 1970. Growth of Staphylococcus aureus in acidified pasteurized milk. J. Milk Food Technol., 33: 516-520.
Direct Link  |  

Moon, N.J., 1983. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bacteriol., 55: 453-460.
Direct Link  |  

Nielsen, M.K. and N. Arneborg, 2007. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiol., 24: 101-105.
CrossRef  |  

Omori, T., K. Ogawa and M. Shimoda, 1995. Effect of citric acid on glycerol formation by Saccharomyces cerevisiae in barley Shochu mash. Seibutsu-Kogaku Kaishi, 73: 89-95.
Direct Link  |  

Pampulha, M.E. and M.C. Loureiro-Dias, 1989. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Applied Microbiol. Biotechnol., 31: 547-550.
CrossRef  |  

Pattison, T.L. and A. von Holy, 2001. Effect of selected natural antimicrobials on Baker's yeast activity. Lett. Appl. Microbiol., 33: 211-215.
CrossRef  |  PubMed  |  Direct Link  |  

Querol, A. and G. Fleet, 2006. Yeasts in Food and Beverages. Springer, Berlin, Germany, pp: 335-379.

Quintas, J., J.S. Leyva, R. Sotoca, M.C. Loureiro-Dias and J.M. Peinado, 2005. A model of the spesific growth rate inhibition by weak acids in yeastbased on energy requirements. Int. J. Food Microbiol., 100: 125-130.
CrossRef  |  Direct Link  |  

Ray, B. and W.E. Sandine, 1992. Acetic,Propionic and Lactic Acids of Starter Culture Bacteria as Biopreservatives. In: Food Biopreservatives of Microbial Origin, Ray, B. and M. Daeschel (Eds.). Marcel Dekker Inc., New York, pp: 103-136.

Ray, B., 1996. Fundamental Food Microbiology. CRC Press, Boca Raton, Florida.

Romano, P. and G. Suzzi, 1985. Sensitivity of Saccharomyces cerevisiae vegetative cells and spores to antimicrobial compounds. J. Applied Bacteriol., 591: 299-302.
PubMed  |  Direct Link  |  

Sarlin, P.J. and R. Philip, 2011. Efficacy of marine yeasts and baker's yeast as immunostimulants in Fenneropenaeus indicus: A comparative study. Aquaculture, 321: 173-178.
CrossRef  |  Direct Link  |  

Sarnoski, PJ., R.R. Boyer and S.F. O'Keefe, 2012. Application of proanthocyanidins from peanut skins as a natural yeast ihibitory agent. J. Food Sci., 77: 242-249.
CrossRef  |  PubMed  |  Direct Link  |  

Savard, T., C. Beaulieu, N.J. Gardner and C.P. Champagne, 2002. Characterization of spoilage yeasts isolated from fermented vegetables and inhibition by lactic acetic and propionic acids. Food Microbiol., 19: 363-373.
Direct Link  |  

Serpaggi, V., F. Remize, G. Recorbet, E. Gaudot-Dumas, A. Sequeira-Le Grand and H. Alexandre, 2012. Characterization of the Viable But Nonculturable (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol., 30: 438-447.
CrossRef  |  PubMed  |  Direct Link  |  

Smulders, F.J.M., P. Barendsen, J.G. Van Logtestijn, D.A.A. Mossel and G.M. Van Der Marel, 1986. Review: Lactic acid: Considerations in favour of its acceptance as a meat decontaminant. Int. J. Food Sci. Technol., 21: 419-436.
CrossRef  |  Direct Link  |  

Sofos, J.N., 2000. Sorbic Acid. In: Natural Food Antimocrobial Systems, Naidu, A.S. (Ed.). CRC Press, New York, pp: 637-659.

Sorrells, K.M., D.C. Enigl and J.R. Hatfield, 1989. Effect of pH, acidulant, time and temperature on the growth and survival of Listeria monocytogenes. J. Food Prot., 5: 571-573.
Direct Link  |  

Souza, E.L., T.L.M. Stamford, E.O. Lima and V.N. Trajano, 2007. Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling yeasts. Food Control., 18: 409-413.
CrossRef  |  Direct Link  |  

Thomas, D.S. and R.R. Davenport, 1985. Zygosaccharomyces bailii: A profile of characteristics and spoilage activities. Food Microbiol., 2: 157-169.
CrossRef  |  Direct Link  |  

Tudor, E. and R. Board, 1993. Food-Spoilage Yeasts. In: The Yeasts: Yeast Technology, Rose, A.H. (Ed.). 2nd Edn., Vol. 5, Academic Press, London, pp: 435-516.

Ullah, A., R. Orij, S. Brul and G.J. Smits, 2012. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Applied Environ. Microbiol., 78: 8377-8387.
CrossRef  |  Direct Link  |  

Warth, A.D., 1977. Mechanisms of resistance of Saccharomyces bailii to benzoic and other weak acids used as food preservatives. J. Applied Bacteriol., 43: 215-230.
CrossRef  |  Direct Link  |  

Wojtatowicz, M., J. Chrzanowska, P. Juskekyk, A. Skib and A. Gdula, 2002. Identification and biochemical characteristics of yeast mycoflora of Rokpol cheese. Int. J. Food Microbiol., 69: 135-140.
PubMed  |  Direct Link  |  

Yanochko, G.M., S. Khoh-Reiter, M.G. Evans and B.A. Jessen, 2010. Comparison of preservative-induced toxicity on monolayer and stratified Chang conjunctival cells. Toxicol. In Vitro, 24: 1324-1331.
CrossRef  |  Direct Link  |  

Yigit, A. and M. Korukluoglu, 2007. The effect of potassium sorbate, NaCl and pH on the growth of food spoilage fungi. Ann. Microbiol., 57: 209-215.
CrossRef  |  Direct Link  |  

Young, K.M. and P.M. Foegeding, 1993. Acetic, Lactic and citric acids and pH inhibition of Listeria monocytogenes scott A. and the effect on intracellular pH. J. Applied Bacteriol., 74: 515-520.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved