Journal of Engineering and Applied Sciences

Year: 2013
Volume: 8
Issue: 4
Page No. 116 - 119

Thermal Boundary Layer Analysis of Nanofluids in a Circular Tube

Authors : Seyyed Shahabeddin Azimi and Mansour Kalbasi

References

Bird, R.B., W.E. Stewart and E.N. Lightfoot, 2007. Transport Phenomena. 2nd Edn., John Wiley and Sons, New York.

Buongiorno, J., 2006. Convective transport in nanofluids. ASME J. Heat Transfer, 128: 240-250.
CrossRef  |  Direct Link  |  

He, Y., Y. Mena, Y. Zhao, H. Lu and Y. Ding, 2009. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Applied Therm. Eng., 29: 1965-1972.
Direct Link  |  

Jang, S.P. and S.U.S. Choi, 2004. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Phys. Lett., Vol. 84. 10.1063/1.1756684

Kakac, S. and A. Pramuanjaroenkij, 2009. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer, 52: 3187-3196.
CrossRef  |  

Kays, M.W. and M.E. Crawford, 1993. Convective Heat and Mass Transfer. 3nd Edn., McGraw-Hill Book Co., New York.

Kleinstreuer, C. and Y. Feng, 2011. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Res. Lett., 10.1186/1556-276X-6-229

Maxwell, J.C., 1904. A Treatise on Electricity and Magnetism Clarendon Press, Oxford, pp: 108-111.

Wang, X.Q. and A.S. Mujumdar, 2007. Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci., 46: 1-19.
CrossRef  |  

Xuan, Y. and W. Roetzel, 2000. Conceptions for heat transfer correlations of nanofluids. Int. J. Heat Mass Transfer, 43: 3701-3707.
CrossRef  |  

Zhu, H., C. Zhang, S. Liu, Y. Tang and Y. Yin, 2006. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Phys. Lett., 10.1063/1.2221905

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved