Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 10 SI
Page No. 8924 - 8935

Contact Impedance Measurements Using Compound Electrodes from Electrical Impedance Spectroscopy (EIS) Study During Banana Ripening

Authors : A. Chowdhury, Tushar Kanti Bera, D. Ghoshal and B. Chakraborty

References

Ackman, J.J. and M.A. Seitz, 1984. Methods of complex impedance measurements in biological tissues. CRC. Crit. Rev. Biomed. Eng., 11: 281-311.
PubMed  |  

Alistair, B. and A. Adler, 2011. The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol. Meas., 32: 745-754.
CrossRef  |  PubMed  |  Direct Link  |  

Almuhammadi, K., T.K. Bera and G. Lubineau, 2017. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates. Compos. Struct., 168: 510-521.
Direct Link  |  

Alper, C., M. Honkala and J. Hyttinen, 2013. Effect of pressure and padding on motion artifact of textile electrodes. Biomed. Eng. Online, 12: 26-43.
Direct Link  |  

Amoros, A., P. Zapata, M.T. Pretel, M.A. Botella and M. Serrano, 2003. Physico-chemical and physiological changes during fruit development and ripening of five loquat (Eriobotrya japonica Lindl.) cultivars. Food Sci. Technol. Intl., 9: 43-51.
Direct Link  |  

Ando, Y., K. Mizutani and N. Wakatsuki, 2014. Electrical impedance analysis of potato tissues during drying. J. Food Eng., 121: 24-31.
Direct Link  |  

Azzarello, E., I.S. Mugna, C. Pandolfi, E. Masi and S. Mancuso, 2006. Stress assessment in plants by impedance spectroscopy. Floriculture Ornamental Plant Biotechnol., 3: 140-148.

Barsoukov, E. and J.R. Macdonald, 2005. Impedance Spectroscopy: Theory, Experiment and Applications. 2nd Edn., Wiley, Hoboken, New Jersey, USA., ISBN:0-471-64749-7, Pages: 616.

Bauchot, A.D., F.R. Harker and W.M. Arnold, 2000. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol. Technol., 18: 9-18.
Direct Link  |  

Bera, T.K. and J. Nagaraju, 2011. Electrical impedance spectroscopic studies of the electronic connectors of DIP switch based multiplexers suitable for multifrequency electrical impedance tomography. Proceedings of the International Conference on Biomedical Engineering (ICBME-2011), December 10-12, 2011, Manipal Institute of Technology, Manipal, India, pp: 58-65.

Bera, T.K. and J. Nagaraju, 2011. Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. J. Electr. Bioimpedance, 2: 48-63.
CrossRef  |  Direct Link  |  

Bera, T.K. and J. Nagaraju, 2013. Studying the variations of complex electrical bio-impedance of vegetables and fruits under the different health status. Proceedings of the 15th and 14th International Joint Conference on Electrical Bio-Impedance (ICEBI) and Electrical Impedance Tomography (EIT), April 22-25, 2013, Springer, Berlin, Germany, pp: 193-193.

Bera, T.K. and J. Nagaraju, 2014. Measurement, Instrumentation and Sensors Handbook. In: Part VII: Medical, Biomedical and Health, Webster, J.G. (Ed.). CRC Press, Boca Raton, Florida, USA., ISBN:978-1-4398-4891-3, pp: 1-2.

Bera, T.K. and J. Nagaraju, 2014. Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Meas., 47: 264-286.
Direct Link  |  

Bera, T.K. and J. Nagaraju, 2015. A gold sensors array for imaging the real tissue phantom in electrical impedance tomography. Proceedings of the IOP Conference on Series: Materials Science and Engineering Vol. 73, August 3-6, 2015, IOP Publishing, Macau, China, pp: 012083-012087.

Bera, T.K., J. Nagaraju and G. Lubineau, 2016. A LabVIEW-Based Electrical Bioimpedance Spectroscopic Data Interpreter (LEBISDI) for tissue impedance analysis in medical, biomedical and biological applications. J. Electr. Bioimpedance, 7: 35-54.
CrossRef  |  Direct Link  |  

Bera, T.K., J. Nagaraju and G. Lubineau, 2016. Electrical Impedance Spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J. Visual., 19: 691-713.
Direct Link  |  

Bera, T.K., J.K. Seo, H. Kwon and J. Nagaraju, 2013. A LabVIEW Based Electrical Bio-Impedance Spectroscopic Data Interpreter (LEBISDI) for studying the equivalent circuit parameters of biological tissues. Proceedings of the Joint 15th and 14th International Conference on Electrical Bio-Impedance (ICEBI) and Electrical Impedance Tomography (EIT), April 22-25, 2013, Springer, Berlin, Germany, pp: 1-77.

Bera, T.K., S. Bera, K. Kar and S. Mondal, 2016. Studying the variations of complex electrical bio-impedance of plant tissues during boiling. Procedia Technol., 23: 248-255.
Direct Link  |  

Bera, T.K., Y. Mohamadou, K. Lee, H. Wi and T.I. Oh et al., 2014. Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics. Sens., 14: 9738-9754.
CrossRef  |  Direct Link  |  

Birgersson, U.H., E. Birgersson and S. Ollmar, 2012. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. J. Electr. Bioimpedance, 3: 51-60.
Direct Link  |  

Bonora, P.L., F. Deflorian and L. Fedrizzi, 1996. Electrochemical impedance spectroscopy as a tool for investigating under paint corrosion. Electrochim. Acta, 41: 1073-1082.
Direct Link  |  

Borges, E., M. Sequeira, A.F.V. Cortez, H.C. Pereira and T. Pereira et al., 2013. Assessment of physiological states of plants in situ: An innovative approach to the use of electrical impedance spectroscopy. Proceedings of the 5th International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, March 24-29, 2013, IARIA, Wilmington, USA., ISBN:978-1-61208-260-8, pp: 1-8.

Boulier, A., J. Fricker, A.L. Thomasset and M. Apfelbaum, 1990. Fat-free mass estimation by the two-electrode impedance method. Am. J. Clin. Nutr., 52: 581-585.
Direct Link  |  

Brady, C.J., 1987. Fruit ripening. Annu. Rev. Plant Physiol., 38: 155-178.
CrossRef  |  Direct Link  |  

Caravia, L., C. Collins and S.D. Tyerman, 2015. Electrical impedance of Shiraz berries correlates with decreasing cell vitality during ripening. Aust. J. Grape Wine Res., 21: 430-438.
CrossRef  |  Direct Link  |  

Cardu, R., P.H. Leong, C.T. Jin and A. McEwan, 2012. Electrode contact impedance sensitivity to variations in geometry. Physiol. Meas., 33: 817-830.
CrossRef  |  PubMed  |  Direct Link  |  

Chakraborty, S., C. Das, R. Saha, A. Das and N.K. Bera et al., 2015. Investigating the quasi-oscillatory behavior of electrical parameters with the concentration of D-glucose in aqueous solution. J. Electr. Bioimpedance, 6: 10-17.
Direct Link  |  

Chowdhury, A., D. Ghoshal, T.K. Bera, B. Chakraborty and M.N. Kumar, 2017. Comparison of Two and Four Electrode Methods for Studying the Impedance Variation During Cucumber Storage Using Electrical Impedance Spectroscopy (EIS). In: Computer Communication and Electrical Technology, Guha, D., B. Chakraborty and H.S. Dutta (Eds.). CRC Press, Boca Raton, Florida, USA., ISBN:978-1-138-03157-9, pp: 261-265.

Chowdhury, A., T.K. Bera, D. Ghoshal and B. Chakraborty, 2015. Studying the electrical impedance variations in banana ripening using Electrical Impedance Spectroscopy (EIS). Proceedings of the 3rd International Conference on Computer, Communication, Control and Information Technology (C3IT), February 7-8, 2015, IEEE, Hooghly, India, ISBN:978-1-4799-4446-0, pp: 1-4.

Chowdhury, A., T.K. Bera, D. Ghoshal and B. Chakraborty, 2017. Electrical impedance variations in banana ripening: An analytical study with electrical impedance spectroscopy. J. Food Process Eng., 40: e12387-e12400.
CrossRef  |  Direct Link  |  

Christensen, B.J., T. Coverdale, R.A. Olson, S.J. Ford and E.J. Garboczi et al., 1994. Impedance spectroscopy of hydrating cement‐based materials: Measurement, interpretation and application. J. Am. Ceram. Soc., 77: 2789-2804.
CrossRef  |  Direct Link  |  

Dean, D.A., T. Ramanathan, D. Machado and R. Sundararajan, 2008. Electrical impedance spectroscopy study of biological tissues. J. Electrostat., 66: 165-177.
Direct Link  |  

Euring, F., W. Russ and W. Wilke, 2011. Development of an impedance measurement system for the detection of decay of apples. Procedia Food Sci., 1: 1188-1194.
Direct Link  |  

Fang, Q., X. Liu and I. Cosic, 2007. Bioimpedance study on four apple varieties. Proceedings of the 13th and 8th International Conference on Electrical Bioimpedance and Electrical Impedance Tomography, August 29-September 2, 2007, Springer, Graz, Austria, ISBN:978-3-540-73840-4, pp: 114-117.

Fraczek, M., T. Krecicki, Z. Moron, A. Krzywaznia and J. Ociepka et al., 2016. Measurements of electrical impedance of biomedical objects. Acta Bioeng. Biomech., 18: 11-17.
CrossRef  |  Direct Link  |  

Glatthaar, M., M. Riede, N. Keegan, K.S. Hvid and B. Zimmermann et al., 2007. Efficiency limiting factors of organic bulk hetero junction solar cells identified by electrical impedance spectroscopy. Solar Energy Mater. Solar Cells, 91: 390-393.
Direct Link  |  

Harker, F.R. and J. Dunlop, 1994. Electrical impedance studies of nectarines during cool storage and fruit ripening. Postharvest Biol. Technol., 4: 125-134.
Direct Link  |  

Harker, F.R. and J.H. Maindonald, 1994. Ripening of nectarine fruit (changes in the cell wall, vacuole and membranes detected using electrical impedance measurements). Plant Physiol., 106: 165-171.
Direct Link  |  

Harker, F.R. and S.K. Forbes, 1997. Ripening and development of chilling injury in persimmon fruit: An electrical impedance study. N. Z. J. Crop Hortic. Sci., 25: 149-157.
Direct Link  |  

Hayden, R.I., C.A. Moyse, F.W. Calder, D.P. Crawford and D.S. Fensom, 1969. Electrical impedance studies on potato and alfalfa tissue. J. Exp. Bot., 20: 177-200.
Direct Link  |  

He, C., C. Gao, Y. Ma, M. Li and A. Hao et al., 2007. In situ electrical impedance spectroscopy under high pressure on diamond anvil cell. Appl. Phys. Lett., 91: 092124-092124.
Direct Link  |  

Hua, P., E.J. Woo, J.G. Webster and W.J. Tompkins, 1993. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE. Trans. Biomed. Eng., 40: 335-343.
CrossRef  |  Direct Link  |  

Hua, P., E.J. Woo, J.G. Webster and W.J. Tompkins, 1993. Using compound electrodes in electrical impedance tomography. IEEE. Trans. Biomed. Eng., 40: 29-34.
CrossRef  |  Direct Link  |  

Hwang, J.H., K.S. Kirkpatrick, T.O. Mason and E.J. Garboczi, 1997. Experimental limitations in impedance spectroscopy: Part IV electrode contact effects. Solid State Ionics, 98: 93-104.
Direct Link  |  

Inaba, A., T. Manabe, H. Tsuji and T. Iwamoto, 1995. Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.) fruit. Plant Physiol., 107: 199-205.
Direct Link  |  

Jackson, P.J. and F.R. Harker, 2000. Apple bruise detection by electrical impedance measurement. HortScience, 35: 104-107.
Direct Link  |  

John, W., 2009. Medical Instrumentation: Application and Design. John Wiley & Sons, Hoboken, New Jersey, ISBN:9781118312858, Pages: 713.

Juansah, J., W. Budiastra, K. Dahlan and K.B. Seminar, 2012. The prospect of electrical impedance spectroscopy as non-destructive evaluation of citrus fruits acidity. Intl. J. Emerging Technol. Adv. Eng., 2: 58-64.
Direct Link  |  

Kanti, B.T., 2014. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng., 2014: 1-28.
Direct Link  |  

Kendig, M. and J. Scully, 1990. Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corros., 46: 22-29.
Direct Link  |  

Laarabi, S., 2014. Characterization of short-term stress applied to the root system by electrical impedance measurement in the first leaf of corn (Zea mays L.) and Pumpkin (Cucurbita maxima L.). Am. J. Plant Sci., 5: 1285-1295.
CrossRef  |  Direct Link  |  

Lafontaine, H.O. and T. Bajazet, 2005. Analysis of root growth by impedance spectroscopy (EIS). Plant Soil, 277: 299-313.
Direct Link  |  

Lanfredi, S., P.S. Saia, R. Lebullenger and A.C. Hernandes, 2002. Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: Analysis by impedance spectroscopy. J. Solid State Ionics, 146: 329-339.
CrossRef  |  

Loan, M.D.V., P. Withers, J. Matthie and P.L. Mayclin, 1993. Use of Bioimpedance Spectroscopy to Determine Extracellular Fluid, Intracellular Fluid, Total Body Water and Fat-Free Mass. In: Human Body Composition, Ellis, K.J. and J.D. Eastman (Eds.). Springer, Berlin, Germany, ISBN:978-1-4899-1270-1, pp: 67-70.

Lukaski, H.C., P.E. Johnson, W.W. Bolonchuk and G.I. Lykken, 1985. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr., 41: 810-817.
Direct Link  |  

Macdonald, J.R. and W.B. Johnson, 2005. Fundamentals of Impedance Spectroscopy. In: Impedance Spectroscopy: Theory, Experiment and Applications, Barsoukov, E. and J.R. Macdonald (Eds.). Wiley, Hoboken, New Jersey, ISBN:0-471-64749-7, pp: 1-26.

Macdonald, J.R., 1992. Impedance spectroscopy. Ann. Biomed. Eng., 20: 289-305.
PubMed  |  Direct Link  |  

Meziane, N., J.G. Webster, M. Attari and A.J. Nimunkar, 2013. Dry electrodes for electrocardiography. Physiol. Meas., 34: R47-R69.
Direct Link  |  

Mirtaheri, P., S. Grimnes and G. Martinsen, 2005. Electrode polarization impedance in weak NaCl aqueous solutions. IEEE. Trans. Biomed. Eng., 52: 2093-2099.
CrossRef  |  Direct Link  |  

Mizukami, Y., Y. Sawai and Y. Yamaguchi, 2006. Moisture content measurement of tea leaves by electrical impedance and capacitance. Biosyst. Eng., 93: 293-299.
Direct Link  |  

Moisala, A., Q. Li, I.A. Kinloch and A.H. Windle, 2006. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol., 66: 1285-1288.
Direct Link  |  

Morrison, F.D., D.C. Sinclair and A.R. West, 2001. Characterization of lanthanum‐doped barium Titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc., 84: 531-538.
CrossRef  |  Direct Link  |  

Murray, J.N. and P.J. Moran, 1989. Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy. Corros., 45: 34-43.
Direct Link  |  

Orazem, M.E. and B. Tribollet, 2008. Electrochemical Impedance Spectroscopy. Wiley, Hoboken, New Jersey, ISBN:9780470381571, Pages: 560.

Orjan, G.M. and S. Grimnes, 2011. Bioimpedance and Bioelectricity Basics. 2nd Edn., Elsevier, Amsterdam, Netherlands, ISBN:978-0-12-374004-5, Pages: 471.

Park, G., H.H. Cudney and D.J. Inman, 2000. Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst., 6: 153-160.
Direct Link  |  

Plonsey, R. and R. Barr, 1982. The four-electrode resistivity technique as applied to cardiac muscle. IEEE. Trans. Biomed. Eng., 7: 541-546.
CrossRef  |  Direct Link  |  

Pohl, J., S. Herold, G. Mook and F. Michel, 2001. Damage detection in smart CFRP composites using impedance spectroscopy. Smart Mater. Struct., 10: 834-842.
Direct Link  |  

Repo, T., 2003. Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean. Seed Sci. Res., 12: 17-29.

Repo, T., D.H. Paine and A.G. Taylor, 2002. Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris). Seed Sci. Res., 12: 17-29.
Direct Link  |  

Repo, T., E. Oksanen and E. Vapaavuori, 2004. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones. Tree Physiol., 24: 833-843.
Direct Link  |  

Ross, C.B., J.P. Rasor and G.G. Porter, 1960. Changes in electrical characteristics of avocados during ripening. Yearbook Calif. Avocado Soc., 44: 75-78.
Direct Link  |  

Rothlingshofer, L., M. Ulbrich, S. Hahne and S. Leonhardt, 2011. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. J. Electr. Bioimpedance, 2: 79-85.
Direct Link  |  

Ruiz, G.A., M.L. Zamora and C.J. Felice, 2014. Impedance spectroscopy of yeast cells attached to gold electrodes. J. Electr. Bioimpedance, 5: 40-47.
Direct Link  |  

Sammer, M., B. Laarhoven, E. Mejias, D. Yntema and E.C. Fuchs et al., 2014. Biomass measurement of living Lumbriculus variegates with impedance spectroscopy. J. Electr. Bioimpedance, 5: 92-98.
Direct Link  |  

Scott, D., 2002. Important Factors in Surface EMG Measurement. Bortec Biomedical Publisher, Calgary, Alberta, Canada,.

Sone, Y., P. Ekdunge and D. Simonsson, 1996. Proton conductivity of Nafion 117 as measured by a four‐electrode AC impedance method. J. Electrochem. Soc., 143: 1254-1259.
CrossRef  |  Direct Link  |  

Song, S.H. and P. Xiao, 2003. An impedance spectroscopy study of oxide films formed during high temperature oxidation of an austenitic stainless steel. J. Mater. Sci., 38: 499-506.
Direct Link  |  

Tai, Y., T.K. Bera, G. Lubineau and Z. Yang, 2017. Combining the converse humidity/resistance response behaviors of RGO films for flexible logic devices. J. Mater. Chem. C, 5: 3848-3854.
Direct Link  |  

Vainola, A. and T. Repo, 2000. Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves. Ann. Bot., 86: 799-805.
Direct Link  |  

Varlan, A.R. and W. Sansen, 1996. Nondestructive electrical impedance analysis in fruit: Normal ripening and injuries characterization. Electro Magnetobiol., 15: 213-227.
Direct Link  |  

Vozary, E., P. Laslo and G. Zsivanovits, 1999. Impedance parameter characterizing apple bruise. Ann. N. Y. Acad. Sci., 873: 421-429.
CrossRef  |  Direct Link  |  

Wang, X., J. Mei and P. Xiao, 2001. Non-destructive evaluation of thermal barrier coatings using impedance spectroscopy. J. Eur. Ceram. Soc., 21: 855-859.
Direct Link  |  

Wang, Y., H. Sha and C. Ren, 2007. Influences of compound electrode parameter on measurement sensitivity and reconstruction quality in electrical impedance tomography. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, August 27-September 1, 2006, Starfield COEX Mall, Seoul, South Korea, ISBN:978-3-540-36839-7, pp: 3567-3571.

West, A.R., D.C. Sinclair and N. Hirose, 1997. Characterization of electrical materials, especially ferroelectrics by impedance spectroscopy. J. Electroceram., 1: 65-71.
Direct Link  |  

Woo, E.J., P. Hua, J.G. Webster, W.J. Tompkins and R.P. Areny, 1992. Skin impedance measurements using simple and compound electrodes. Med. Biol. Eng. Comput., 30: 97-102.
Direct Link  |  

Wu, L., Y. Ogawa and A. Tagawa, 2008. Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. J. Food Eng., 87: 274-280.
Direct Link  |  

Xing, L., 2006. Electrical impedance spectroscopy applied in plant physiology studies. Master Thesis, RMIT University, Melbourne, Victoria.

Zhang, G., A. Ryyppo and T. Repo, 2002. The electrical impedance spectroscopy of Scots pine needles during cold acclimation. Physiol. Plantarum, 115: 385-392.
CrossRef  |  Direct Link  |  

Zhang, M.I.N. and J.H.M. Willison, 1990. Electrical conductance of red onion scale tissue during freeze-thaw injury. Plant Biol., 39: 359-367.
CrossRef  |  Direct Link  |  

Zhang, M.I.N. and J.H.M. Willison, 1991. Electrical impedance analysis in plant tissues11. J. Exp. Bot., 42: 1465-1475.
Direct Link  |  

Zhang, M.I.N. and J.H.M. Willison, 1992. Electrical impedance analysis in plant tissues: The effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can. J. Plant Sci., 72: 545-553.
Direct Link  |  

Zhang, T., T.K. Bera, E.J. Woo and J.K. Seo, 2014. Spectroscopic admittivity imaging of biological tissues. J. Korean Soc. Ind. Appl. Math., 18: 77-105.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved