Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 13 SI
Page No. 10633 - 10638

Study and Synthesis of Fe O Nanoparticles Prepared by Laser 3 4 Ablation and its Biomedical Application

Authors : Kareem Hussein Jwad, Nehia Neama Hussein, Buthenia Abd-Alhamza, Ahmed A. Al-Amiery and Ayad F. Alkaim

References

Al-Akhras, M.A. and L.I. Grossweiner, 1996. Sensitization of photohemolysis by hypericin and Photofrin®. J. Photochem. Photobiol. B. Biol., 34: 169-175.
CrossRef  |  PubMed  |  Direct Link  |  

Ansari, S.A., A. Azam and A.H. Naqvi, 2011. Structural and morphological study of Fe2O3 nanoparticles. Asian J. Res. Chem., 4: 1638-1642.
Direct Link  |  

Arshad, M., A. Azam, A.S. Ahmed, S. Mollah and A.H. Naqvi, 2011. Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. J. Alloys Compd., 509: 8378-8381.
CrossRef  |  Direct Link  |  

Aula, S., S. Lakkireddy, A.V.N. Swamy, A. Kapley and K. Jamil et al., 2014. Biological interactions In vitro of zinc oxide nanoparticles of different characteristics. Mater. Res. Express, Vol. 1,

Babes, L., B. Denizot, G. Tanguy, J.J. Le Jeune and P. Jallet, 1999. Synthesis of Iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci., 212: 474-482.
CrossRef  |  Direct Link  |  

Beets-Tan, R.G.H., J.M.A. Van Engelshoven and J.W.M. Greve, 1998. Hepatic adenoma and focal nodular hyperplasia: MR findings with superparamagnetic Iron oxide-enhanced MRI. Clin. Imaging, 22: 211-215.
CrossRef  |  PubMed  |  Direct Link  |  

Berry, C.C. and A.S. Curtis, 2003. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys., 36: 198-206.
Direct Link  |  

Cai, H., X. An, J. Cui, J. Li and S. Wen et al., 2013. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated Iron oxide nanoparticles for biomedical applications. ACS. Appl. Mater. Interfaces, 5: 1722-1731.
CrossRef  |  PubMed  |  Direct Link  |  

Chan, D.C.F., D.B. Kirpotin and P.A. Bunn Jr., 1993. Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Mater., 122: 374-378.
CrossRef  |  Direct Link  |  

Costa, R.M., A.S. Magalhaes, J.A. Pereira, P.B. Andrade, P. Valentao, M. Carvalho and B.M. Silva, 2009. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol., 47: 860-865.
CrossRef  |  PubMed  |  Direct Link  |  

Djeridane, A., M. Yousfi, B. Nadjemi, N. Vidal, J.F. Lesgards and P. Stocker, 2007. Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur. Food. Res. Technol., 224: 801-809.
CrossRef  |  Direct Link  |  

Ebrahimzadeh, M.A., S.F. Nabavi and S.M. Nabavi, 2009. Antihemolytic and antioxidant activity of Hibiscus esculentus leaves. Pharmacologyonline, 2: 1097-1105.

Ebrahimzadeh, M.A., S.F. Nabavi, B. Eslami and S.M. Nabavi, 2009. Antioxidant and antihemolytic potentials of Physosperum cornubiense (L.) DC. Pharmacologyonline, 3: 394-403.
Direct Link  |  

Ebrahimzadeh, M.A., S.F. Nabavi, S.M. Nabavi and B. Eslami, 2010. Antihemolytic and antioxidant activities of Allium paradoxum. Cent. Eur. J. Boil., 5: 338-345.
CrossRef  |  Direct Link  |  

Flynn, T.P., D.W. Allen, G.J. Johnson and J.G. White, 1983. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation. J. Clin. Invest., 71: 1215-1223.
Direct Link  |  

Furno, F., K.S. Morley, B. Wong, B.L. Sharp and P.L. Arnold et al., 2004. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother, 54: 1019-1024.
CrossRef  |  Direct Link  |  

Gupta, A.K. and M. Gupta, 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26: 3995-4021.
CrossRef  |  PubMed  |  Direct Link  |  

Iglesias-Silva, E., J. Rivas, L.L. Isidro and M.A. Lopez-Quintela, 2007. Synthesis of silver-coated magnetite nanoparticles. J. Non. Cryst. Solids, 353: 829-831.
CrossRef  |  Direct Link  |  

Iida, H., K. Takayanagi, T. Nakanishi and T. Osaka, 2007. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci., 314: 274-280.
CrossRef  |  PubMed  |  Direct Link  |  

Jagminas, A., G. Niaura, J. Kuzmarskyt and R. Butkien, 2004. Surface-enhanced Raman scattering effect for copper oxygenous compounds array within the alumina template pores synthesized by ac deposition from Cu (II) acetate solution. Appl. Surf. Sci., 225: 302-308.
CrossRef  |  Direct Link  |  

Jagminas, A., J. Kuzmarskyt and G. Niaura, 2002. Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions. Appl. Surf. Sci., 201: 129-137.
CrossRef  |  Direct Link  |  

Khalil, A.T., M. Ovais, I. Ullah, M. Ali and Z.K. Shinwari et al., 2017. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev., 10: 186-201.
Direct Link  |  

Ko, F.N., G. Hsiao and Y.H. Kuo, 1997. Protection of oxidative hemolysis by demethyldiisoeugenol in normal and β-thalassemic red blood cells. Free Radical Biol. Med., 22: 215-222.
CrossRef  |  PubMed  |  Direct Link  |  

Lee, C., J.Y. Kim, W.I. Lee, K.L. Nelson and J. Yoon et al., 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol., 42: 4927-4933.
CrossRef  |  PubMed  |  Direct Link  |  

Loeb, S.K., A.P. Nair and S. Valiyaveettil, 2010. Investigating the toxicity of iron (III) oxide nanoparticles, zinc (II) oxide nanorods and multi-walled carbon nanotubes on red blood cells. MSc Thesis, National University of Singapore, Singapore.

Mahdy, S.A., Q.J. Raheed and P.T. Kalaichelvan, 2012. Antimicrobial activity of zero-valent iron nanoparticles. Int. J. Mod. Eng. Res., 2: 578-581.
Direct Link  |  

Makhluf, S., R. Dror, Y. Nitzan, Y. Abramovich and R. Jelinek et al., 2005. Microwave‐assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater., 15: 1708-1715.
CrossRef  |  Direct Link  |  

Matheson, L.J. and P.G. Tratnyek, 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol., 28: 2045-2053.
CrossRef  |  

Mohapatra, M. and S. Anand, 2010. Synthesis and applications of nano-structured iron oxides/hydroxides-a review. Intl. J. Eng. Sci. Technol., 2: 127-146.
CrossRef  |  Direct Link  |  

Nabavi, S.M., M.A. Ebrahimzadeh, S.F. Nabavi, B. Eslami and A.A. Dehpour, 2011. Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). Eur. Rev. Med. Pharmacol. Sci., 15: 157-164.
PubMed  |  Direct Link  |  

Premanathan, M., K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med., 7: 184-192.
CrossRef  |  PubMed  |  Direct Link  |  

Rice-Evans, C., S.C. Omorphos and E. Baysal, 1986. Sickle cell membranes and oxidative damage. Biochem. J., 237: 265-269.
CrossRef  |  PubMed  |  Direct Link  |  

Taylor, E.N. and T.J. Webster, 2009. The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Intl. J. Nanomed., 4: 145-152.
CrossRef  |  PubMed  |  Direct Link  |  

Tran, N., A. Mir, D. Mallik, A. Sinha and S. Nayar et al., 2010. Bactericidal effect of Iron oxide nanoparticles on Staphylococcus aureus. Intl. J. Nanomed., 5: 277-283.
PubMed  |  Direct Link  |  

Yang, H.L., S.C. Chen, N.W. Chang, J.M. Chang and M.L. Lee et al., 2006. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem. Toxicol., 44: 1513-1521.
CrossRef  |  PubMed  |  Direct Link  |  

Yao, K., Z. Peng and X. Fan, 2009. Preparation of nanoparticles with an environment-friendly approach. J. Environ. Sci., 21: 727-730.
CrossRef  |  PubMed  |  Direct Link  |  

Yu, L.L., 2001. Free radical scavenging properties of conjugated linoleic acid. J. Agric. Food Chem., 49: 3452-3456.
PubMed  |  Direct Link  |  

Zhang, L., Y. Jiang, Y. Ding, M. Povey and D. York, 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 9: 479-489.
CrossRef  |  Direct Link  |  

Zhang, Y.C., J.Y. Tang, G.L. Wang, M. Zhang and X.Y. Hu, 2006. Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J. Crystal Growth, 294: 278-282.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved