Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 12
Page No. 4305 - 4313

Numerical Analysis of Various Parameters on the Dynamics of Drop Formation

Authors : Pardeep Bishnoi and M.K. Sinha

References

Basaran, O.A., 2002. Smallā€scale free surface flows with breakup: Drop formation and emerging applications. AIChE. J., 48: 1842-1848.
CrossRef  |  Direct Link  |  

Bhat, P.P., 2008. Drop formation: Methods and applications. Master Thesis, Purdue University, West Lafayette, Indiana.

Bishnoi, P., D. Patel, M. Srivastava and M.K. Sinha, 2016. CFD analysis of the factors affecting the Satellite drop formation. Intl. J. Adv. Res. Sci. Eng., 5: 707-713.

Bishnoi, P., D. Patel, M. Srivastava and M.K. Sinha, 2016. CFD analysis of the factors affecting the Satellite drop formation. Intl. J. Adv. Res. Sci. Eng., 5: 707-713.

Calvert, P., 2007. Printing cells. Sci., 318: 208-209.
CrossRef  |  Direct Link  |  

Chang, B., G. Nave and S. Jung, 2012. Drop formation from a wettable nozzle. Commun. Nonlinear Sci. Numer. Simul., 17: 2045-2051.
Direct Link  |  

Clift, R., J.R. Grace and M.E. Weber, 1978. Bubbles, Drops and Particles. 3rd Edn., Academic Press, Cambridge, Massachusetts, USA., ISBN:9780121769505, Pages: 380.

Doring, M., 1982. Ink-jet printing. Philips Tech. Rev., 40: 192-198.
Direct Link  |  

Dravid, V., P.B. Loke, C.M. Corvalan and P.E. Sojka, 2008. Drop formation in non-Newtonian jets at low Reynolds numbers. J. Fluids Eng., 130: 1-8.
CrossRef  |  Direct Link  |  

Drumright-Clarke, M.A. and Y. Renardy, 2004. The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids, 16: 14-21.
Direct Link  |  

Eggers, J., 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69: 865-930.
CrossRef  |  Direct Link  |  

Fawehinmi, O.B., P.H. Gaskell, P.K. Jimack, N. Kapur and H.M. Thompson, 2005. A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation. Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci., 219: 933-947.
Direct Link  |  

Grubelnik, V. and M. Marhl, 2005. Drop formation in a falling stream of liquid. Am. J. Phys., 73: 415-419.
Direct Link  |  

Hauser, E.A., H.E. Edgerton, B.M. Holt and J.T. Cox Jr, 1936. The application of the high-speed motion picture camera to research on the surface tension of liquids. J. Phys. Chem., 40: 973-988.
CrossRef  |  Direct Link  |  

Henderson, D.M., W.G. Pritchard and L.B. Smolka, 1997. On the pinch-off of a pendant drop of viscous fluid. Phys. Fluids, 9: 3188-3200.
Direct Link  |  

Kumar, R. and N.R. Kuloor, 1970. Bubble formation in viscous liquids under constant flow conditions. Can. J. Chem. Eng., 48: 383-388.
CrossRef  |  Direct Link  |  

Middleman, S., 1995. Modeling Axisymmetric Flows: Dynamics of Films, Jets and Drop. ASEE, New York, USA., Pages: 299.

Pan, Y. and K. Suga, 2003. Capturing the pinch-off of liquid jets by the level set method. J. Fluids Eng., 125: 922-927.
CrossRef  |  Direct Link  |  

Peregrine, D.H., G. Shoker and A. Symon, 1990. The bifurcation of liquid bridges. J. Fluid Mech., 212: 25-39.
Direct Link  |  

Rayleigh, L., 1878. On the instability of jets. Proc. London Math. Soc., 1: 4-13.
CrossRef  |  Direct Link  |  

Rembe, C., J. Patzer, E.P. Hofer and P. Krehl, 1996. Realcinematographic visualization of droplet ejection in thermal ink jets. J. Imaging Sci. Technol., 40: 400-404.
Direct Link  |  

Rembe, C., M. Beuten and E.P. Hofer, 1999. Investigations of nonreproducible phenomena in thermal ink jets with real high-speed cine photomicrography. J. Imaging Sci. Technol., 43: 325-331.
Direct Link  |  

Renardy, Y. and M. Renardy, 2002. PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys., 183: 400-421.
Direct Link  |  

Savart, F., 1833. Treatise on constitution of the liquid flow jetted out through orifice of thin plate. Ann. Chem., 53: 337-386.

Shi, X.D., M.P. Brenner and S.R. Nagel, 1994. A cascade of structure in a drop falling from a faucet. Sci., 265: 219-222.
Direct Link  |  

Sirringhaus, H., T. Kawase, R.H. Friend, T. Shimoda and M. Inbasekaran et al., 2000. High-resolution inkjet printing of all-polymer transistor circuits. Sci., 290: 2123-2126.
CrossRef  |  Direct Link  |  

Stone, H.A., B.J. Bentley and L.G. Leal, 1986. An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech., 173: 131-158.
Direct Link  |  

Tirtaatmadja, V., G.H. McKinley and J.J. Cooper-White, 2006. Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration. Phys. Fluids, 18: 1-18.
CrossRef  |  Direct Link  |  

Tjahjadi, M.S.H.A., H.A. Stone and J.M. Ottino, 1992. Satellite and subsatellite formation in capillary breakup. J. Fluid Mech., 243: 297-317.
Direct Link  |  

Wehking, J.D., M. Gabany, L. Chew and R. Kumar, 2014. Effects of viscosity, interfacial tension and flow geometry on droplet formation in a microfluidic T-junction. Microfluid. Nanofluid., 16: 441-453.
Direct Link  |  

Wilkes, E.D., S.D. Phillips and O.A. Basaran, 1999. Computational and experimental analysis of dynamics of drop formation. Phys. Fluids, 11: 3577-3598.
Direct Link  |  

Zhang, D.F. and H.A. Stone, 1997. Drop formation in viscous flows at a vertical capillary tube. Phys. Fluids, 9: 2234-2242.
Direct Link  |  

Zhang, X. and O.A. Basaran, 1995. An experimental study of dynamics of drop formation. Phys. Fluids, 7: 1184-1203.
Direct Link  |  

Zhang, X., 1999. Dynamics of drop formation in viscous flows. Chem. Eng. Sci., 54: 1759-1774.
Direct Link  |  

Zhang, X., 1999. Dynamics of growth and breakup of viscous pendant drops into air. J. Colloid Interface Sci., 212: 107-122.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved