Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 18
Page No. 7721 - 7728

The Effect of Chemical Treatment of Reduced Graphene Oxide on NO2 Gas Sensing

Authors : Mustafa N. Oleiwi, Fouad A. Al-Saady and Abdulkareem M. Ali Al-Sammarraie

References

Alam, S.N., N. Sharma and L. Kumar, 2017. Synthesis of Graphene Oxide (GO) by modified hummers method and its thermal reduction to obtain Reduced Graphene Oxide (rGO). Graphene, 6: 1-18.
CrossRef  |  Direct Link  |  

Bautista-Flores, C., R.Y. Sato-Berru and D. Mendoza, 2015. Doping graphene by chemical treatments using acid and basic substances. J. Mater. Sci. Chem. Eng., 3: 17-21.
Direct Link  |  

Geim, A.K. and K.S. Novoselov, 2007. The rise of graphene. Nat. Mater., 6: 183-191.
CrossRef  |  

Guo, B., L. Fang, B. Zhang and J.R. Gong, 2011. Graphene doping: A review. Insci. J., 1: 80-89.
CrossRef  |  Direct Link  |  

Kawai, S., S. Saito, S. Osumi, S. Yamaguchi and A.S. Foster et al., 2015. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nature Commun., 6: 8098-8103.
CrossRef  |  PubMed  |  Direct Link  |  

Kong, X.K., C.L. Chen and Q.W. Chen, 2014. Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43: 2841-2857.
CrossRef  |  PubMed  |  Direct Link  |  

Kuila, T., S. Bose, A.K. Mishra, P. Khanra, N.H. Kim and J.H. Lee, 2012. Chemical functionalization of graphene and its applications. Progr. Mater. Sci., 57: 1061-1105.
CrossRef  |  

Li, S., Z. Wang, H. Jiang, L. Zhang and J. Ren et al., 2016. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun., 52: 10988-10991.
CrossRef  |  PubMed  |  Direct Link  |  

Ma, Z., S. Dou, A. Shen, L. Tao and L. Dai et al., 2015. Sulfur‐doped graphene derived from cycled lithium-sulfur batteries as a metal‐free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Intl. Ed., 54: 1888-1892.
CrossRef  |  Direct Link  |  

Minitha, C.R. and R.T. Rajendrakumar, 2013. Synthesis and characterization of reduced Graphene Oxide. Adv. Mater. Res., 678: 56-60.
Direct Link  |  

Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang and Y. Zhang et al., 2004. Electric field effect in atomically thin carbon films. Science, 306: 666-669.
CrossRef  |  PubMed  |  Direct Link  |  

Novoselov, K.S., D. Jiang, F. Schedin, T.J. Booth and V.V. Khotkevich et al., 2005. Two-dimensional atomic crystals. Proc. National Acad. Sci. USA., 102: 10451-10453.
CrossRef  |  Direct Link  |  

Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj and H.R. Krishnamurthy et al., 2009. Synthesis, structure and properties of boron‐and nitrogen‐doped graphene. Adv. Mater., 21: 4726-4730.
CrossRef  |  Direct Link  |  

Varghese, S.S., S. Lonkar, K.K. Singh, S. Swaminathan and A. Abdala, 2015. Recent advances in graphene based gas sensors. Sens. Actuators B Chem., 218: 160-183.
CrossRef  |  Direct Link  |  

Zhang, Y., Z. Sun, H. Wang, Y. Wang and M. Liang et al., 2015. Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: Effects of hydrothermal reaction and annealing on electrocatalytic performance. RSC. Adv., 5: 10430-10439.
CrossRef  |  Direct Link  |  

Zhao, W., P. Tan, J. Zhang and J. Liu, 2010. Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Phys. Rev. B, 82: 245423-245423.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved