Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 22
Page No. 9540 - 9547

Special Properties for Resistance to Corrosion of Biomedical Alloy Ti-Al-Mo-Zr Used in Surgical Operations

Authors : Jassim MohammedSalman Al-Murshdy

References

Ahmed, M., D.G. Savvakin, O.M. Ivasishin and E.V. Pereloma, 2014. The effect of ageing on microstructure and mechanical properties of powder Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Mater. Sci. Eng. A, 605: 89-97.
Direct Link  |  

Choubey, A., B. Basu and R. Balasubramaniam, 2005. Electrochemical behavior of Ti-based alloys in simulated human body fluid environment. Trends Biomater. Artif. Organs, 18: 64-72.

Elshalakany, A.B., S. Ali, A.A. Mata, A.K. Eessaa and P. Mohan et al., 2017. Microstructure and mechanical properties of Ti-Mo-Zr-Cr biomedical alloys by powder metallurgy. J. Mater. Eng. Perform., 26: 1262-1271.
CrossRef  |  Direct Link  |  

Hanawa, T., 2006. Recent development of new alloys for biomedical use. Mater. Sci. Forum, 512: 243-248.
CrossRef  |  Direct Link  |  

Ho, W.F., S.C. Wu, S.K. Hsu, Y.C. Li and H.C. Hsu, 2012. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications. Mater. Sci. Eng. C, 32: 517-522.
CrossRef  |  

Hsu, H.C., S.C. Wu, S.K. Hsu, C.T. Li and W.F. Ho, 2015. Effects of chromium addition on structure and mechanical properties of Ti-5Mo alloy. Mater. Des., 65: 700-706.
CrossRef  |  

Hussein, M.A., A.S. Mohammed and N. Al-Aqeeli, 2015. Wear characteristics of metallic biomaterials: A review. Mater., 8: 2749-2768.
CrossRef  |  Direct Link  |  

Jackson, M. and K. Dring, 2006. A review of advances in processing and metallurgy of titanium alloys. Mater. Sci. Technol., 22: 881-887.
CrossRef  |  

Lastnosti, V.L.E.N.M., O.K. Zlitine and P.Z.M. Prahov, 2017. Influence of alloying elements on the mechanical properties of a cobalt-based alloy produced with powder metallurgy. Mater. Technol., 51: 443-447.
CrossRef  |  Direct Link  |  

Li, Y., C. Yang, H. Zhao, S. Qu and X. Li et al., 2014. New developments of Ti-based alloys for biomedical applications. Mater., 7: 1709-1800.
CrossRef  |  PubMed  |  Direct Link  |  

Licausi, M.P., A.I. Munoz and V.A. Borras, 2013. Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J. Mech. Behav. Biomed. Mater., 20: 137-148.
PubMed  |  Direct Link  |  

Lin, J., S. Ozan, K. Munir, K. Wang and X. Tong et al., 2017. Effects of solution treatment and aging on the microstructure, mechanical properties and corrosion resistance of a β type Ti-Ta-Hf-Zr alloy. RSC. Adv., 7: 12309-12317.
CrossRef  |  Direct Link  |  

Mohan, L., C. Anandan and V.W. Grips, 2012. Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank's solution. Appl. Surf. Sci., 258: 6331-6340.
CrossRef  |  

Nadai, L., B. Katona, A. Terdik and E. Bognar, 2013. Chemical etching of titanium samples. Periodica Polytech. Eng. Mech. Eng., 57: 53-57.
CrossRef  |  Direct Link  |  

Oliveira, N.T.C. and A.C. Guastaldi, 2009. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater., 5: 399-405.
CrossRef  |  PubMed  |  Direct Link  |  

Peng, Q., B. Yang, L. Liu, C. Song and B. Friedrich, 2016. Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures. J. Alloys Compd., 656: 530-538.
CrossRef  |  

Tamilselvi, S. and N. Rajendran, 2006. Electrochemical studies on the stability and corrosion resistance of Ti-5Al-2Nb-1Ta alloy for biomedical applications. Trends Biomater. Artif. Organs, 20: 49-52.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved