Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 23
Page No. 9914 - 9923

Mechanical Properties and Bacterial Adhesion of Anatase Nanoparticles Reinforced Poly (Methyl Methacrylate)

Authors : Imad Ali Disher Al-Hydary and Muna Sabbar Jebar Al-Rubiae

References

AL-Rubiae, M.S., 2016. Polymer-Nanoparticles composites for the reduction of the bacterial adherence to surfaces. Iraqi J. Biotechnol., 15: 17-24.
Direct Link  |  

Ahearn, D.G., D.T. Grace, M.J. Jennings, R.N. Borazjani and K.J. Boles et al., 2000. Effects of hydrogel-silver coatings on in vitro adhesion to catheters of bacteria associated with urinary tract infections. Curr. Microbiol., 41: 120-125.
CrossRef  |  PubMed  |  Direct Link  |  

Al-Hydary, I.A.D., 2014. Preparation and characterization of phase-pure Anatase nanoparticles. Iraqi J. Mech. Mater. Eng., 14: 98-106.
Direct Link  |  

Al-Tahhan, R.A.R., 1998. Cell surface hydrophobicity of Pseudomonas aeruginosa: Effects of monorhamnolipid and substrate on fatty acid and lipopolysaccharide content. Ph.D Thesis, University of Arizona, Tucson, Arizona.

An, Y.H. and R.J. Friedman, 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res., 43: 338-348.
PubMed  |  Direct Link  |  

Balamurugan, A., S. Kannan, V. Selvaraj and S. Rajeswari, 2004. Development and spectral characterization of poly (Methyl methacrylate)-hydroxyapatite composite for biomedical applications. Trends Biomater. Artif. Organs, 18: 41-45.

Barrett, S.P., 1988. Bacterial adhesion to intravenous cannulae: Influence of implantation in the rabbit and of enzyme treatments. Epidemiol. Infect., 100: 91-100.
PubMed  |  Direct Link  |  

Belaabed, R., S. Elabed, A. Addaou, A. Laajab and M.A. Rodriguez et al., 2016. Synthesis of LTA zeolite for bacterial adhesion. Bull. Spanish Soc. Ceram. Glass, 55: 152-158.
CrossRef  |  Direct Link  |  

Busani, T. and R.A.B. Devine, 2005. Dielectric and infrared properties of TiO2 films containing anatase and rutile. Semicond. Sci. Technol., 20: 870-875.
CrossRef  |  Direct Link  |  

Camprubi, S., S. Merino, J. Benedi, P. Williams and J.M. Tomas, 1992. Physicochemical surface properties of Klebsiella pneumoniae. Curr. Microbiol., 24: 31-33.
Direct Link  |  

Chaw, K.C., M. Manimaran and F.E. Tay, 2005. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother., 49: 4853-4859.
PubMed  |  Direct Link  |  

Cheng, G., Z. Zhang, S. Chen, J.D. Bryers and S. Jiang, 2007. Inhibition of bacterial adhesion and biofilm formation on Zwitterionic surfaces. Biomater., 28: 4192-4199.
CrossRef  |  PubMed  |  Direct Link  |  

Crosby, A.J. and J.Y. Lee, 2007. Polymer nanocomposites: The nano effect on mechanical properties. Polym. Rev., 47: 217-229.
Direct Link  |  

Donlan, R.M., 2002. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis., 8: 881-890.
CrossRef  |  PubMed  |  Direct Link  |  

Furno, F., K.S. Morley, B. Wong, B.L. Sharp and P.L. Arnold et al., 2004. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother, 54: 1019-1024.
CrossRef  |  Direct Link  |  

Giordano, C., E. Saino, L. Rimondini, M.P. Pedeferri and L. Visai et al., 2011. Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices. Colloids Surf. B. Biointerfaces, 88: 648-655.
CrossRef  |  PubMed  |  Direct Link  |  

Gu, H. and D. Ren, 2014. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front. Chem. Sci. Eng., 8: 20-33.
CrossRef  |  Direct Link  |  

Gu, J., P.Z. Chen, B.B. Seo, J.M. Jardin and M.S. Verma et al., 2016. Adhesion characteristics of Staphylococcus aureus bacterial cells on funnel-shaped palladium-cobalt alloy nanostructures. J. Exp. Nanosci., 11: 480-489.
CrossRef  |  Direct Link  |  

Guegan, C., J. Garderes, L.G. Pennec, F. Gaillard and F. Fay et al., 2014. Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surf. B. Biointerfaces, 114: 193-200.
PubMed  |  Direct Link  |  

Habash, M. and G. Reid, 1999. Microbial biofilms: Their development and significance for medical device-related infections. J. Clin. Pharmacol., 39: 887-898.
CrossRef  |  PubMed  |  Direct Link  |  

Habimana, O., A.J.C. Semiao and E. Casey, 2014. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J. Membr. Sci., 454: 82-96.
CrossRef  |  Direct Link  |  

Han, A., J.K. Tsoi, F.P. Rodrigues, J.G. Leprince and W.M. Palin, 2016. Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors. Intl. J. Adhes., 69: 58-71.
CrossRef  |  Direct Link  |  

Hasan, J., S. Jain, R. Padmarajan, S. Purighalla and V.K. Sambandamurthy et al., 2018. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Mater. Des., 140: 332-344.
CrossRef  |  PubMed  |  Direct Link  |  

He, Z., Q. Cai, H. Fang, G. Situ and J. Qiu et al., 2013. Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. J. Environ. Sci., 25: 2460-2468.
CrossRef  |  PubMed  |  Direct Link  |  

Jiang, W., H. Mashayekhi and B. Xing, 2009. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ. Pollut., 157: 1619-1625.
CrossRef  |  PubMed  |  Direct Link  |  

Kathiresan, S. and B. Mohan, 2017. In-vitro bacterial adhesion study on stainless steel 316L subjected to magneto rheological abrasive flow finishing. Biomed. Res., 28: 3169-3175.
Direct Link  |  

Lerebour, G., S. Cupferman and M.N. Bellon‐Fontaine, 2004. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the Episkin® reconstructed epidermis model and to an inert 304 stainless steel substrate. J. Appl. Microbiol., 97: 7-16.
CrossRef  |  PubMed  |  Direct Link  |  

Li, B. and B.E. Logan, 2004. Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf. B. Biointerfaces, 36: 81-90.
CrossRef  |  PubMed  |  Direct Link  |  

Li, B. and Q. Ye, 2015. Antifouling Surfaces of Self-Assembled Thin Layer. In: Antifouling Surfaces and Materials, Zhou, F. (Ed.). Springer, Berlin, Germany, ISBN:978-3-662-45203-5, pp: 31-54.

Lipschitz, I., 1982. The vibrational spectrum of poly (Methyl methacrylate): A review. Polym. Plast. Technol. Eng., 19: 53-106.
Direct Link  |  

Lorenzetti, M., I. Dogsa, T. Stosicki, D. Stopar and M. Kalin et al., 2015. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS. Appl. Mater. Interfaces, 7: 1644-1651.
CrossRef  |  PubMed  |  Direct Link  |  

Nakamoto, K., 2009. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry. 6th Edn., John Wiley and Sons, USA., pp: 419.

Pavithra, D. and M. Doble, 2008. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention. Biomed. Mater., 3: 1-13.
CrossRef  |  PubMed  |  Direct Link  |  

Puckett, S.D., E. Taylor, T. Raimondo and T.J. Webster, 2010. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31: 706-713.
CrossRef  |  Direct Link  |  

Quirynen, M., M. Marechal, H.J. Busscher, A.H. Weerkamp and P.L. Darius et al., 1990. The influence of surface free energy and surface roughness on early plaque formation: An in vivo study in man. J. Clin. Periodontology, 17: 138-144.
CrossRef  |  PubMed  |  Direct Link  |  

Razatos, A., Y.L. Ong, M.M. Sharma and G. Georgiou, 1998. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Nat. Acad. Sci., 95: 11059-11064.
PubMed  |  Direct Link  |  

Rochford, E.T.J., A.H.C. Poulsson, J.S. Varela, P. Lezuo and R.G. Richards et al., 2014. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface. Colloids Surf. B. Biointerfaces, 113: 213-222.
CrossRef  |  PubMed  |  Direct Link  |  

Rodrigues, L.R., 2011. Inhibition of Bacterial Adhesion on Medical Devices. In: Bacterial Adhesion, Linke, D. and A. Goldman (Eds.). Springer, Dordrecht, Netherlands, ISBN:978-94-007-0939-3, pp: 351-367.

Schaechter, M., 2004. The Desk Encyclopedia of Microbiology. 1st Edn., Elsevier Academic Press, New York.

Sharmila, G., S. Haries, M.F. Fathima, S. Geetha and N.M. Kumar et al., 2017. Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technol., 320: 22-26.
CrossRef  |  Direct Link  |  

Singh, A., A. Ahmed, K.N. Prasad, S. Khanduja and S.K. Singh et al., 2015. Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother., 59: 6882-6890.
CrossRef  |  PubMed  |  Direct Link  |  

Song, F., H. Koo and D. Ren, 2015. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res., 94: 1027-1034.
CrossRef  |  PubMed  |  Direct Link  |  

Speranza, G., G. Gottardi, C. Pederzolli, L. Lunelli and R. Canteri et al., 2004. Role of chemical interactions in Bacterial adhesion to polymer surfaces. Biomater., 25: 2029-2037.
CrossRef  |  PubMed  |  Direct Link  |  

Tanner, J., C. Robinson, E. Soderling and P. Vallittu, 2005. Early plaque formation on fibre-reinforced composites In vivo. Clin. Oral Invest., 9: 154-160.
CrossRef  |  PubMed  |  Direct Link  |  

Teughels, W., V.N. Assche, I. Sliepen and M. Quirynen, 2006. Effect of material characteristics and-or surface topography on biofilm development. Clin. Oral Implants Res., 17: 68-81.
CrossRef  |  PubMed  |  Direct Link  |  

Torres, A.G., C. Jeter, W. Langley and A.G. Matthysse, 2005. Differential binding of Escherichia coli O157: H7 to alfalfa, human epithelial cells and plastic is mediated by a variety of surface structures. Appl. Environ. Microbiol., 71: 8008-8015.
PubMed  |  Direct Link  |  

Truong, V.K., R. Lapovok, Y.S. Estrin, S. Rundell and J.Y. Wang et al., 2010. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31: 3674-3683.
CrossRef  |  

Wassmann, T., S. Kreis, M. Behr and R. Buergers, 2017. The influence of surface texture and wettability on initial bacterial adhesion on titanium and Zirconium oxide dental implants. Intl. J. Implant Dent., 3: 1-11.
CrossRef  |  PubMed  |  Direct Link  |  

Xing, S.F., X.F. Sun, A.A. Taylor, S.L. Walker and Y.F. Wang et al., 2015. D‐Amino acids inhibit initial bacterial Adhesion: Thermodynamic evidence. Biotechnol. Bioeng., 112: 696-704.
CrossRef  |  PubMed  |  Direct Link  |  

Zhang, X., L. Wang and E. Levanen, 2013. Superhydrophobic surfaces for the reduction of bacterial adhesion. Rsc. Adv., 3: 12003-12020.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved