Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 9
Page No. 3072 - 3082

Multi-Objective Optimization of A HVAC System: Non-Dominated Sorting-Based Differential Evolution Approach

Authors : Y.N. Kuan and H.S. Ong

References

ANSI/ASHRAE., 2013. Thermal environmental conditions for human occupancy standard 55-2013. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia.

ASHRAE., 2009. ASHRAE Handbook of Fundamentals. Vol. 30329, ASHRAE, Akron, Ohio, Pages: 544.

Anonymous, 2013. Multi-objective performance metrics. Department of Electrical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, Agra, India. http://shodhganga.inflibnet.ac.in/bitstream/10603/15070/28/28_appendix_h.pdf

Awad, M. and R. Khanna, 2015. Multiobjective Optimization. In: Efficient Learning Machines: Theories, Concepts and Applications for Engineers and System Designers, Awad, M. and R. Khanna (Eds.). Apress, New York, USA., ISBN-13:978-1-4302-5989-3, pp: 185-208.

Beghi, A., L. Cecchinato and M. Rampazzo, 2011. A multi-phase genetic algorithm for the efficient management of multi-chiller systems. Energy Convers. Manage., 52: 1650-1661.
CrossRef  |  Direct Link  |  

Beghi, A., L. Cecchinato, G. Cosi and M. Rampazzo, 2012. A PSO-based algorithm for optimal multiple chiller systems operation. Appl. Therm. Eng., 32: 31-40.
CrossRef  |  Direct Link  |  

Chiandussi, G., M. Codegone, S. Ferrero and F.E. Varesio, 2012. Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl., 63: 912-942.
CrossRef  |  Direct Link  |  

Coelho, L.D.S. and A. Askarzadeh, 2016. An enhanced bat algorithm approach for reducing electrical power consumption of air conditioning systems based on differential operator. Appl. Therm. Eng., 99: 834-840.
Direct Link  |  

Coelho, L.D.S. and V.C. Mariani, 2013. Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy Build., 59: 273-278.
CrossRef  |  Direct Link  |  

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6: 182-197.
CrossRef  |  Direct Link  |  

Delgarm, N., B. Sajadi, F. Kowsary and S. Delgarm, 2016. Multi-objective optimization of the building energy performance: A simulation-based approach by means of Particle Swarm Optimization (PSO). Appl. Energy, 170: 293-303.
Direct Link  |  

Fong, K.F., V.I. Hanby and T.T. Chow, 2006. HVAC system optimization for energy management by evolutionary programming. Energy Build., 38: 220-231.
CrossRef  |  Direct Link  |  

Fong, K.F., V.I. Hanby and T.T. Chow, 2009. System optimization for HVAC energy management using the robust evolutionary algorithm. Appl. Therm. Eng., 29: 2327-2334.
CrossRef  |  Direct Link  |  

Garnier, A., J. Eynard, M. Caussanel and S. Grieu, 2015. Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Appl. Soft Comput., 37: 847-862.
CrossRef  |  Direct Link  |  

He, X., Z. Zhang and A. Kusiak, 2014. Performance optimization of HVAC systems with computational intelligence algorithms. Energy Build., 81: 371-380.
CrossRef  |  Direct Link  |  

Huang, W. and H.N. Lam, 1997. Using genetic algorithms to optimize controller parameters for HVAC systems. Energy Build., 26: 277-282.
CrossRef  |  Direct Link  |  

Hussain, S., H.A. Gabbar, D. Bondarenko, F. Musharavati and S. Pokharel, 2014. Comfort-based fuzzy control optimization for energy conservation in HVAC systems. Control Eng. Pract., 32: 172-182.
CrossRef  |  Direct Link  |  

Kusiak, A., G. Xu and F. Tang, 2011. Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm. Energy, 36: 5935-5943.
Direct Link  |  

Kusiak, A., M. Li and F. Tang, 2010. Modeling and optimization of HVAC energy consumption. Applied Energy, 87: 3092-3102.
CrossRef  |  Direct Link  |  

Lee, W.S., Y.T. Chen and Y. Kao, 2011. Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build., 43: 599-604.
CrossRef  |  Direct Link  |  

Magnier, L. and F. Haghighat, 2010. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm and artificial neural network. Build. Environ., 45: 739-746.
CrossRef  |  Direct Link  |  

Mezura-Montes, E., M. Reyes-Sierra and C.A.C. Coello, 2008. Multi-Objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. In: Advances in Differential Evolution, Chakraborty, U.K., (Eds.). Springer, Berlin, Germany, ISBN:978-3-540-68827-3, pp: 173-196.

Mossolly, M., K. Ghali and N. Ghaddar, 2009. Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy, 34: 58-66.
CrossRef  |  Direct Link  |  

Nassif, N., S. Kajl and R. Sabourin, 2004. Evolutionary algorithms for multi-objective optimization in HVAC system control strategy. Proceedings of the IEEE Annual Conference on Fuzzy Information, Processing Vol. 1 (NAFIPS'04), June 27-30, 2004, IEEE, Banff, Alberta, Canada, pp: 51-56.

Riquelme, N., C. von Lucken and B. Baran, 2015. Performance metrics in multi-objective optimization. Proceedings of the 2015 Latin American Computing Conference (CLEI), October 19-23, 2015, IEEE, Arequipa, Peru, pp: 1-11.

Seo, J., R. Ooka, J.T. Kim and Y. Nam, 2014. Optimization of the HVAC system design to minimize primary energy demand. Energy Build., 76: 102-108.
CrossRef  |  Direct Link  |  

Srinivas, N. and K. Deb, 1994. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput., 2: 221-248.
Direct Link  |  

Storn, R. and K. Price, 1997. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim., 11: 341-359.
CrossRef  |  Direct Link  |  

Tydrichova, M. and W. Kozlowska, 2017. Analysis of various multi-objective optimization evolutionary algorithms for monte carlo treatment planning system. MSc Thesis, European Organization for Nuclear Research, Geneva, Switzerland.

Wang, S. and X. Jin, 2000. Model-based optimal control of VAV air-conditioning system using genetic algorithm. Build. Environ., 35: 471-487.
CrossRef  |  Direct Link  |  

Wright, J.A., H.A. Loosemore and R. Farmani, 2002. Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy Build., 34: 959-972.
CrossRef  |  Direct Link  |  

Xu, X. and S. Wang, 2009. A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems. Applied Thermal Eng., 29: 91-104.
CrossRef  |  Direct Link  |  

Xu, Y., K. Ji, Y. Lu, Y. Yu and W. Liu, 2013. Optimal building energy management using intelligent optimization. Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering (CASE’13), August 17-20, 2013, IEEE, Madison, Wisconsin, ISBN:978-1-4799-1515-6, pp: 95-99.

Yang, R. and L. Wang, 2012. Multi-objective optimization for decision-making of energy and comfort management in building automation and control. Sustainable Cities Soc., 2: 1-7.
CrossRef  |  Direct Link  |  

Zeng, Y., Z. Zhang and A. Kusiak, 2015. Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms. Energy, 86: 393-402.
CrossRef  |  Direct Link  |  

Zheng, G.R. and M. Zaheer-Uddin, 1996. Optimization of thermal processes in a variable air volume HVAC system. Energy, 21: 407-420.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved