Asian Journal of Information Technology

Year: 2014
Volume: 13
Issue: 7
Page No. 375 - 381

Mining Residential Electricity Consumption Patterns to Generate Tailored Baselines

Authors : M. Sheeba Santha Kumari, A.P. Shanthi and V. Uma Maheswari


Amin, S.M. and B.F. Wollenberg, 2005. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Magazine, 3: 34-41.
CrossRef  |  

Balijepalli, V.S.K.M., V. Pradhan, S.A. Khaparde and R.M. Shereef, 2011. Review of demand response under smart grid paradigm. Proceedings of the IEEE PES Innovative Smart Grid Technologies-India, December 1-3, 2011, Kollam, Kerala, pp: 236-243.

Calinski, T. and J. Harabasz, 1974. A dendrite method for cluster analysis. Commun. Stat., 3: 1-27.
CrossRef  |  

Chicco, G., R. Napoli, P. Postolache, M. Scutariu and C. Toader, 2003. Customer characterization options for improving the tariff offer. IEEE Trans. Power Syst., 18: 381-387.
CrossRef  |  

Dent, I., T. Craig, U. Aickelin and T. Rodden, 2012. An approach for assessing clustering of households by electricity usage. Proceedings of the 12th Annual Workshop on Computational Intelligence, September 5-7, 2012, Edinburgh, Scotland -.

Dent, I., U. Aickelin and T. Rodden, 2011. Application of a clustering framework to UK domestic electricity data. Proceedings of the 11th Annual Workshop on Computational Intelligence, September 7-9, 2011, University of Manchester, Manchester -.

Fisher, D.H., 1987. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2: 139-172.
CrossRef  |  

Gennari, J.H., P. Langley and D. Fisher, 1989. Models of incremental concept formation. Artificial Intell., 40: 11-61.
CrossRef  |  

Han, J. and M. Kamler, 2006. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, New York.

Hebrail, G. and A. Berard, 1997. Individual household electric power consumption data set. University of California, School of Information and Computer Science, Irvine, CA.

Hubacek, K., D. Guan and A. Barua, 2007. Changing lifestyles and consumption patterns in developing countries: A scenario analysis for China and India. Futures, 39: 1084-1096.
CrossRef  |  

Loughlin, F., A. Duffy and M. Conlon, 2012. Analysing domestic electricity smart metering data using self organising maps. Proceedings of the Workshop on Integration of Renewables into the Distribution Grid, May 29-30, 2012, Lisbon, pp: 1-4.

Martani, C., D. Lee, P. Robinson, R. Britter and C. Ratti, 2012. ENERNET: Studying the dynamic relationship between building occupancy and energy consumption. Energy Build., 47: 584-591.
CrossRef  |  

Mathieu, J.L., P.N. Price, S. Kiliccote and M.A. Piette, 2011. Quantifying changes in building electricity use, with application to demand response. IEEE Trans. Smart Grid, 2: 507-518.
CrossRef  |  

Mittal, S., Y. Maheshwari, A. Singh, A. Varshney and S. Agarwal, 2013. Smart grid-a pragmatic vision for blackout free future. Int. J. Sci. Eng. Res., 4: 614-620.
Direct Link  |  

Moran, A., J.J. Fuertes, M.A., Prada, S. Alonso, P. Barrientos, I. Diaz and M. Dominguez, 2013. Analysis of electricity consumption profiles in public buildings with dimensionality reduction techniques. Eng. Appl. Artificial Intell., 26: 1872-1880.
Direct Link  |  

Ramos, C. and C. Liu, 2011. Intelligent systems in power systems and energy markets. IEEE Intell. Syst., 26: 38-45.
Direct Link  |  

Richardson, I., M. Thomson, D. Infield and C. Clifford, 2010. Domestic electricity use: A high-resolution energy demand model. Energy Build., 42: 1878-1887.
CrossRef  |  

Tsekouras, G.J., P.B. Kotoulas, C.D. Tsirekis, E.N. Dialynas and N.D. Hatziargyriou, 2008. A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers. Electric Power Syst. Res., 78: 1494-1510.
CrossRef  |  

Witten, I.H. and E. Frank, 2005. Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edn., Morgan Kaufmann Publishers, Massachusetts, USA., ISBN-13: 9780080477022, Pages: 560.

Zhao, Q., 2012. Cluster validity in clustering methods. Ph.D. Thesis, University of Eastern Finland, Finland.

Zhao, Q., M. Xu and P. Franti, 2009. Sum-of-squares based cluster validity index and significance analysis. Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, April 23-25, 2009, Kuopio, Finland, pp: 313-322.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved