Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 17
Page No. 3134 - 3152

Performance Study of Kriging Based Surrogate Models

Authors : A. Muruganandham, R. Mukesh, K. Lingadurai and U. Selvakumar

References

Alexander, K. and E. Tadmor, 2010. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys., 160: 214-282.
CrossRef  |  Direct Link  |  

Balu, R. and U. Selvakumar, 2009. Optimum hierarchical Bezier parameterization of arbitrary curves and surfaces. Proceeding of the 11th Annual CFD Symposium, August, 2009, Indian Institute of Science, Bangalore, India, pp: 46-48.

Balu, R., S. Ulaganathan and N. Asproulis, 2012. Effect of variogram types on surrogate model based optimisation of aircraft wing shapes. Procedia Eng., 38: 2713-2725.
CrossRef  |  Direct Link  |  

Castonguay, P. and S.K. Nadarajah, 2007. Effect of shape parameterization on aerodynamic shape optimization. Proceedings of the 45th AIAA Conference on Aerospace Sciences Meeting and Exhibit, January 8-11, 2007, AIAA, Reno, Nevada, pp: 1-20.

Deepa, S.N. and G. Sugumaran, 2011. MPSO based model order formulation technique for SISO continuous systems. J. Eng. Appl. Sci., 7: 125-130.

Deepa, S.N. and G. Sugumaran, 2012. New results on discrete PID controller design by MPSO based lower order model. J. Elect. Control Eng., 2: 22-28.

Duchaine, F., M.T. Morel and L.Y. Gicquel, 2009. Computational-fluid-dynamics-based kriging optimization tool for aeronautical combustion chambers. AIAA. J., 47: 631-645.
Direct Link  |  

Giunta, A.A., 1997. Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. MSc Thesis, Virginia Tech University, Blacksburg, Virginia.

Hess, J.L., 1990. Panel methods in computational fluid dynamics. Ann. Rev. Fluid Mech., 22: 255-274.
Direct Link  |  

Jouhaud, J.C., P. Sagaut, M. Montagnac and J. Laurenceau, 2007. A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil. Comput. Fluids, 36: 520-529.
Direct Link  |  

Katz, J. and A. Plotkin, 1991. Low-Speed Aerodynamics from Wing Theory to Panel Methods. 2nd Edn., McGraw-Hill, Inc., New York.

Khurana, M.S., H. Winarto and A.K. Sinha, 2009. Airfoil optimization by swarm algorithm with mutation and artificial neural networks. AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.

Liang, Y., X.Q. Cheng, Z.N. Li and J.W. Xiang, 2011. Robust multi-objective wing design optimization via CFD approximation model. Eng. Appl. Comput. Fluid Mech., 5: 286-300.
Direct Link  |  

Mukesh, R., K. Lingadurai and U. Selvakumar, 2014. Kriging methodology for surrogate-based airfoil shape optimization. Arabian J. Sci. Eng., 39: 7363-7373.
CrossRef  |  Direct Link  |  

Mukesh, R., R. Pandiyarajan, S. Ulaganathan and K. Lingadurai, 2012. Influence of search algorithms on aerodynamic design optimization of aircraft wings. Int. J. Soft Comput., 7: 79-84.
Direct Link  |  

Ping, X.U. and C. Jiang, 2008. Aerodynamic optimization design of airfoil based on particle swarm optimization. Aircraft Design, 28: 6-9.

Qin, M.A., D.C. Xin and X.H. Wang, 2009. A modified particle swarm optimization algorithm. Natural Sci., 1: 151-155.

Raymer, D., 2002. Enhancing aircraft conceptual design using multidisciplinary optimization. MSc Thesis, Royal Institute of Technology, Stockholm, Sweden.

Rodriguez, J.D., A. Perez and J.A. Lozano, 2010. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE. Trans. Pattern Anal. Mach. Int., 32: 569-575.
CrossRef  |  Direct Link  |  

Sacks, J., W.J. Welch, T.J. Mitchell and H.P. Wynn, 1989. Design and analysis of computer experiments. Stat. Sci., 4: 409-423.
Direct Link  |  

Sheldahl, R.E. and P.C. Klimas, 1981. Aerodynamic Characteristics of Seven Airfoil Sections Through 180 Degrees Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. Sandia National laboratories, Albuquerque, New Mexico.

Sobieczky, H., 1998. Parametric airfoils and wings. Notes Num. Fluid Mech., 68: 71-88.
Direct Link  |  

Spalart, P.R. and S.R. Allmaras, 1992. A one-equation turbulence model for aerodynamic flows. Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV. USA., Jan. 6-9, American Institute of Aeronautics and Astronautics, pp: 1-23.

Stein, M.L., 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer Verlag, Germany, ISBN: 9780387986296, Pages: 247.

Ulaganathan, S., I. Couckuyt, T. Dhaene, J. Degroote and E. Laermans, 2016. Performance study of gradient-enhanced Kriging. Eng. Comput., 32: 15-34.
CrossRef  |  Direct Link  |  

Wilcox, D.C., 1993. Turbulence modelling for CFD. DCW Industries Inc, Canada, California.

Yang, W.S., C.H. Kung and C.M. Kung, 2011. Image Enhancement Using the Multi-Scale Filter: Application of the Bilateral Filtering Scheme and PSO Algorithm. In: Theoretical and Mathematical Foundations of Computer Science, Zhou, Q. (Ed.). Springer, Berlin, Germany, ISBN:978-3-642-24998-3, pp: 508-514.

Zang, T.A. and L.L. Green, 1999. Multidisciplinary design optimization techniques: Implications and opportunities for fluid dynamics research. Proceedings of the 30th AIAA Conference on Fluid Dynamics, Jun 28- July 1, 1999, AIAA, Norfolk, Virginia, pp: 1-21.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved