Asian Journal of Information Technology

Year: 2016
Volume: 15
Issue: 2
Page No. 338 - 346

Implementation of Brain Computer Interface with RF Power Delivery System

Authors : M. Durairaj and M. Ramakrishnan

References

Azin, M., D.J. Guggenmos, S. Barbay, R.J. Nudo and P. Mohseni, 2011. A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J. Solid-State Cir., 46: 731-745.
CrossRef  |  

Broutas, P., H. Contopanagos, E.D. Kyriakis-Bitzaros, D. Tsoukalas and S. Chatzandroulis, 2012. A low power RF harvester for a smart passive sensor tag with integrated antenna. Sens. Actuators A. Phys., 176: 34-45.
CrossRef  |  Direct Link  |  

Chen, C.Y., C.L. Chang, C.W. Chang, S.C. Lai and T.F. Chien et al., 2013. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications. Sens., 13: 3077-3091.
CrossRef  |  PubMed  |  Direct Link  |  

Chen, Z.N., 2013. Development of ultra-wideband antennas. J. Electromagnet. Eng. Sci., 13: 63-72.

Chou, J.H., D.B. Lin, K.L. Weng and H.J. Li, 2014. All polarization receiving rectenna with harmonic rejection property for wireless power transmission. Antennas Propag. IEEE. Trans., 62: 5242-5249.
CrossRef  |  Direct Link  |  

Costanzo, A., A. Romani, D. Masotti, N. Arbizzani and V. Rizzoli, 2012. RF/baseband co-design of switching receivers for multiband microwave energy harvesting. Sens. Actuators A. Phys., 179: 158-168.
CrossRef  |  Direct Link  |  

Dementyev, A. and J.R. Smith, 2013. A wearable uhf rfid-based eeg system. Proceedings of the 2013 IEEE International Conference on RFID, April 30 May 2, 2013, IEEE, Penang, Malaysia, pp: 1-7.

Dias, N.S., J.P. Carmo, P.M. Mendes and J.H. Correia, 2012. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Med. Eng. Phys., 34: 972-981.
Direct Link  |  

Din, N.M., C.K. Chakrabarty, A.B. Ismail, K.K.A. Devi and W.Y. Chen, 2012. Design of RF energy harvesting system for energizing low power devices. Prog. Electromagnet. Res., 132: 49-69.
CrossRef  |  Direct Link  |  

Falkenstein, E., M. Roberg and Z. Popovic, 2012. Low-power wireless power delivery. Microwave Theory Tech. IEEE. Trans., 60: 2277-2286.
CrossRef  |  Direct Link  |  

Farinholt, K.M., G. Park and C.R. Farrar, 2009. RF energy transmission for a low-power wireless impedance sensor node. Sens. J. IEEE., 9: 793-800.
CrossRef  |  Direct Link  |  

Filipe, S., G. Charvet, M. Foerster, J. Porcherot and J.F. Beche et al., 2011. A wireless multichannel EEG recording platform. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 30-September 3, 2011, Boston, MA., pp: 6319-6322.

Ghadimi, N. and M. Ojaroudi, 2014. A novel design of low power rectenna for wireless sensor and RFID applications. Wirel. Pers. Commun., 78: 1177-1186.
CrossRef  |  Direct Link  |  

Ladan, S., N. Ghassemi, A. Ghiotto and K. Wu, 2013. Highly efficient compact rectenna for wireless energy harvesting application. IEEE. Microwave Mag., 14: 117-122.

Monti, G., F. Congedo, D.D. Donno and L. Tarricone, 2012. Monopole-based rectenna for microwave energy harvesting of UHF RFID systems. Prog. Electromagnet. Res. C., 31: 109-121.
CrossRef  |  Direct Link  |  

Olgun, U., C.C. Chen and J.L. Volakis, 2011. Investigation of rectenna array configurations for enhanced RF power harvesting. Antennas Wirel. Propag. Lett. IEEE., 10: 262-265.
CrossRef  |  Direct Link  |  

Ouda, M.H., M. Arsalan, L. Marnat, A. Shamim and K.N. Salama, 2013. 5.2-GHz RF power harvester in 0.18-/spl mu/m CMOS for implantable intraocular pressure monitoring. Microwave Theory Tech. IEEE. Trans., 61: 2177-2184.
CrossRef  |  Direct Link  |  

Rabaey, J.M., 2011. Brain-machine interfaces as the new frontier in extreme miniaturization. Proceedings of the European Conference on Solid-State Device Research Conference (ESSDERC) 2011, September 12-16, 2011, IEEE, Helsinki, Finland, ISBN: 978-1-4577-0707-0, pp: 19-24.

Robinet, S., P. Audebert, G. Regis, B. Zongo and J.F. Beche et al., 2011. A low-power 0.732 channel mixed-signal circuit for ECoG recordings. Emerging Sel. Top. Cir. Syst. IEEE. J. 1: 451-460.
CrossRef  |  Direct Link  |  

Scheeler, R., S. Korhummel and Z. Popovic, 2014. A dual-frequency ultralow-power efficient 0.5 g rectenna. Microwave Mag., IEEE., 15: 109-114.
CrossRef  |  Direct Link  |  

Sim, Z.W., R. Shuttleworth, M.J. Alexander and B.D. Grieve, 2010. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Prog. Electromagnet. Res., 105: 273-294.
CrossRef  |  Direct Link  |  

Umeda, T., H. Yoshida, S. Sekine, Y. Fujita and T. Suzuki et al., 2006. A 950-MHz rectifier circuit for sensor network tags with 10 m distance. Solid State Cir. IEEE. J., 41: 35-41.
CrossRef  |  Direct Link  |  

Uygur, A. and H. Kuntman, 2013. TMOS-based 0.4 V ultra low-voltage low-power VDTA design and its application to EEG data processing. Radioengineering, 22: 458-466.
Direct Link  |  

Vyas, R.J., B.B. Cook, Y. Kawahara and M.M. Tentzeris, 2013. E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. Microwave Theory Tech. IEEE. Trans., 61: 2491-2505.
CrossRef  |  Direct Link  |  

Yang, X.X., C. Jiang, A.Z. Elsherbeni, F. Yang and Y.Q. Wang, 2013. A novel compact printed rectenna for data communication systems. Antennas Propag. IEEE. Trans., 61: 2532-2539.
CrossRef  |  Direct Link  |  

Yeager, D.J., P.S. Powledge, R. Prasad, D. Wetherall and J.R. Smith, 2008. Wirelessly-charged UHF tags for sensor data collection. Proceedings of the 2008 IEEE International Conference on RFID, April 16-17, 2008, IEEE, Las Vegas, NV., ISBN: 978-1-4244-1711-7, pp: 320-327.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved