Asian Journal of Information Technology

Year: 2017
Volume: 16
Issue: 10
Page No. 771 - 782

Heart Disease Diagnosis using Electrocardiogram (ECG) Signal Processing

Authors : Hadeer El-Saadawy, Manal Tantawi, Howida A. Shedeed and Mohamed F. Tolba

References

Afonso, V.X., W.J. Tompkins, T.Q. Nguyen and S. Luo, 1999. ECG beat detection using filter banks. IEEE Trans. Biomed. Eng., 46: 192-202.
CrossRef  |  Direct Link  |  

Amann, A., R. Tratnig and K. Unterkofler, 2007. Detecting ventricular fibrillation by time-delay methods. IEEE. Trans. Biomed. Eng., 54: 174-177.
CrossRef  |  Direct Link  |  

Ayub, S. and J.P. Saini, 2011. ECG classification and abnormality detection using cascade forward neural network. Intl. J. Eng. Sci. Technol., 3: 41-46.
Direct Link  |  

Bazi, Y., N. Alajlan, H. AlHichri and S. Malek, 2013. Domain adaptation methods for ECG classification. Proceedings of the 2013 International Conference on Computer Medical Applications (ICCMA), January 20-22, 2013, IEEE, Riyadh, Saudi Arabia, ISBN:978-1-4673-5213-0, pp: 1-4.

Breiman, L., 2001. Random forests. Mach. Learn., 45: 5-32.
CrossRef  |  Direct Link  |  

Castells, F., P. Laguna, L. Sornmo, A. Bollmann and J. Roig, 2007. Principal component analysis in ECG signal processing. EURASIP J. Applied Signal Process., 2007: 98-98.
CrossRef  |  Direct Link  |  

Ceylan, R. and Y. Ozbay, 2007. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Syst. Applic., 33: 286-295.
CrossRef  |  Direct Link  |  

Ceylan, R., Y. Ozbay and B. Karlik, 2009. A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network. Expert Syst. Appl., 36: 6721-6726.
Direct Link  |  

Chazal, P.D., M. O'Dwyer and R.B. Reilly, 2004. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE. Trans. Biomed. Eng., 51: 1196-1206.
CrossRef  |  Direct Link  |  

El-Saadawy, H., M. Tantawi, H.A. Shedeed and M.F. Tolba, 2016. Electrocardiogram (ECG) classification based on dynamic beats segmentation. Proceedings of the 10th International Conference on Informatics and Systems, May 09-11, 2016, ACM, Giza, Egypt, ISBN:978-1-4503-4062-5, pp: 75-80.

Escalona, M.M.A., M.C. Soriano, I. Fischer and C.R. Mirasso, 2015. Electrocardiogram classification using reservoir computing with logistic regression. IEEE. J. biomed. Health Inf., 19: 892-898.
CrossRef  |  PubMed  |  Direct Link  |  

Exarchos, T.P., M.G. Tsipouras, C.P. Exarchos, C. Papaloukas and D.I. Fotiadis et al., 2007. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med., 40: 187-200.
PubMed  |  Direct Link  |  

Exarchos, T.P., M.G. Tsipouras, D. Nanou, C. Bazios and Y. Antoniou et al., 2005. A platform for wide scale integration and visual representation of medical intelligence in cardiology: The decision support framework. Proceedings of the International Conference on Computers in Cardiology 2005, September 25-28, 2005, IEEE, Ioannina, Greece, ISBN:0-7803-9337-6, pp: 167-170.

Guler, I. and E.D. Ubeyli, 2005. ECG beat classifier designed by combined neural network model. Pattern Recognit., 38: 199-208.
Direct Link  |  

Ham, F.M. and S. Han, 1996. Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE. Trans. Biomed. Eng., 43: 425-429.
CrossRef  |  PubMed  |  Direct Link  |  

Jiang, W. and S.G. Kong, 2007. Block-based neural networks for personalized ECG signal classification. IEEE. Trans. Neural Netw., 18: 1750-1761.
CrossRef  |  PubMed  |  Direct Link  |  

Jung, Y. and W.J. Tompkins, 2003. Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition. Proceedings of the 25th IEEE Annual International Conference on Engineering in Medicine and Biology Society 2003, Vol. 3, September 17-21, 2003, IEEE, Madison, Wisconsin, ISBN:0-7803-7789-3, pp: 2390-2393.

Kadambe, S., R. Murray and G.F.B. Bartels, 1999. Wavelet transform-based QRS complex detector. IEEE. Trans. Biomed. Eng., 46: 838-848.
CrossRef  |  Direct Link  |  

Kallas, M., C. Francis, L. Kanaan, D. Merheb and P. Honeine et al., 2012. Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. Proceedings of the 19th International Conference on Telecommunications (ICT) 2012, April 23-25, 2012, IEEE, Lebanon, ISBN:978-1-4673-0745-1, pp: 1-5.

Khazaee, A., 2013. Combining SVM and PSO for PVC detection. Intl. J. Adv. Eng. Sci., 3: 1-5.
Direct Link  |  

Kim, H., R.F. Yazicioglu, P. Merken, C. Van Hoof and H.J. Yoo, 2010. ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Inform. Technol. Biomed., 14: 93-100.
CrossRef  |  

Kim, J., H.S. Shin, K. Shin and M. Lee, 2009. Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomed. Eng. Online, 8: 31-43.
CrossRef  |  Direct Link  |  

Kumar, R.G. and Y.S. Kumaraswamy, 2013. Investigation and classification of ECG beat using input output additional weighted feed forward neural network. Proceedings of the 2013 International Conference on Signal Processing Image Processing and Pattern Recognition (ICSIPR), February 7-8, 2013, IEEE, Chennai, India, ISBN:978-1-4673-4861-4, pp: 200-205.

Kutlu, Y. and D. Kuntalp, 2012. Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Programs Biomed., 105: 257-267.
PubMed  |  Direct Link  |  

Lin, C.H., Y.C. Du and T. Chen, 2008. Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Syst. Appl., 34: 2601-2611.
Direct Link  |  

Llamedo, M. and J.P. Martinez, 2011. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng., 58: 616-625.
CrossRef  |  

Llamedo, M. and J.P. Martinez, 2012. An automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE. Trans. Biomed. Eng., 59: 2312-2320.
CrossRef  |  PubMed  |  Direct Link  |  

Luz, E.J.D.S., W.R. Schwartz, G.C. Chavez and D. Menotti, 2016. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed., 127: 144-164.
Direct Link  |  

Martinez, J.P., R. Almeida, S. Olmos, A.P. Rocha and P. Laguna, 2004. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE. Trans. Biomed. Eng., 51: 570-581.
CrossRef  |  PubMed  |  Direct Link  |  

Martis, R.J., U.R. Acharya and L.C. Min, 2013. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control, 8: 437-448.
Direct Link  |  

Martis, R.J., U.R. Acharya, K.M. Mandana, A.K. Ray and C. Chakraborty, 2012. Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl., 39: 11792-11800.
Direct Link  |  

Minami, K., H. Nakajima and T. Toyoshima, 1999. Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng., 46: 179-185.
CrossRef  |  Direct Link  |  

Mishra, A.K. and S. Raghav, 2010. Local fractal dimension based ECG arrhythmia classification. Biomed. Signal Process. Control, 5: 114-123.
CrossRef  |  

Moody, G.B. and R.G. Mark, 2001. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol., 20: 45-50.
PubMed  |  

Osowski, S. and T.H. Linh, 2001. ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng., 48: 1265-1271.
CrossRef  |  Direct Link  |  

Osowski, S., L.T. Hoai and T. Markiewicz, 2004. Support vector machine-based expert system for reliable heartbeat recognition. IEEE. Trans. Biomed. Eng., 51: 582-589.
CrossRef  |  PubMed  |  Direct Link  |  

Owis, M.I., A.H.A. Zied, A.B. Youssef and Y.M. Kadah, 2002. Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE. Trans. Biomed. Eng., 49: 733-736.
CrossRef  |  PubMed  |  Direct Link  |  

Ozbay, Y., R. Ceylan and B. Karlik, 2006. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med., 36: 376-388.
PubMed  |  Direct Link  |  

Pan, J. and W.J. Tompkins, 1985. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng., 32: 230-236.
CrossRef  |  

Poli, R., S. Cagnoni and G. Valli, 1995. Genetic design of optimum linear and nonlinear QRS detectors. IEEE. Trans. Biomed. Eng., 42: 1137-1141.
CrossRef  |  PubMed  |  Direct Link  |  

Prasad, G.K. and J.S. Sahamb, 2003. Classification of ECG arrhythmias using multi-resolution analysis and neural networks. IEEE. Trans. Biomed. Eng., 1: 227-231.
Direct Link  |  

Sornmo, L. and P. Laguna, 2005. Bioelectrical Signal Processing in Cardiac and Neurological Applications. Vol. 8, Academic Press, Cambridge, Massachusetts, ISBN:0-12-437552-9, Pages: 669.

Tantawi, M., K. Revett, A.B. Salem and M.F. Tolba, 2014. Electrocardiogram (ECG): A New Burgeoning Utility for Biometric Recognition. In: Bio-inspiring Cyber Security and Cloud Services; Trends and Innovations, Hassanien, A.E., K.T. Hoon, K. Janusz and A.A. Ismail (Eds.). Springer, Berlin, Germany, ISBN:978-3-662-43615-8, pp: 349-382.

Ubeyli, E.D., 2009. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput. Methods Programs Biomed., 93: 313-321.
PubMed  |  Direct Link  |  

Ubeyli, E.D., 2009. Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digital Signal Process., 19: 320-329.
Direct Link  |  

Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. 2nd Edn., Springer-Verlag, New York, USA., ISBN-13: 9780387945590, Pages: 188.

Yazdanian, H., A. Nomani and M.R. Yazdchi, 2013. Autonomous detection of heartbeats and categorizing them by using support vector machines. Proceedings of the 20th Iranian Conference on Biomedical Engineering (ICBME) 2013, December 18-20, 2013, IEEE, Isfahan, Iran, ISBN:978-1-4799-3233-7, pp: 223-227.

Ye, C., B.V. Kumar and M.T. Coimbra, 2012. Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification. Proceedings of the 21st International Conference on Pattern Recognition (ICPR) 2012, November 11-15, 2012, IEEE, Pittsburgh, Pennsylvania, ISBN:978-1-4673-2216-4, pp: 2428-2431.

Ye, C., B.V. Kumar and M.T. Coimbra, 2012. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE. Trans. Biomed. Eng., 59: 2930-2941.
CrossRef  |  Direct Link  |  

Yu, S.N. and K.T. Chou, 2008. Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Applic., 34: 2841-2846.
CrossRef  |  Direct Link  |  

Yu, S.N. and K.T. Chou, 2009. Selection of significant independent components for ECG beat classification. Expert Syst. Appl., 36: 2088-2096.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved