International Journal of Soft Computing

Year: 2011
Volume: 6
Issue: 2
Page No. 26 - 32

New Trends of Forward Fiber Raman Amplification for Dense Wavelength Division Multiplexing (DWDM) Photonic Communication Networks

Authors : AhmedNabih Zaki Rashed

References

Chen, C.J. and W.S. Wong, 2001. Transient effects in saturated Raman amplifiers. Electr. Lett., 37: 371-373.
CrossRef  |  

Felinskyi, G.S. and P.A. Korotkov, 2008. Raman threshold and optical gain bandwidth in silica fibers. J. Semiconductor Phys. Quantum Electr. Optoelectronics, 11: 360-363.
Direct Link  |  

Fugihara, M.C. and A.N. Pinto, 2008. Low-cost Raman amplifier for CWDM systems. Microwave Optical Technol. Lett., 50: 297-301.
CrossRef  |  

Gest, J. and L.R. Chen, 2007. Impact of the all-optical gain-clamping technique on the transience characteristics of cascaded discrete fiber Raman amplifiers. Optics Commun., 273: 138-148.
CrossRef  |  

Jordanova, L.T. and V.I. Topchiev, 2008. Improvement of the optical channel noise characteristics using distributed raman amplifiers. ICEST, 12: 20-23.
Direct Link  |  

Karasek, M. and M. Menif, 2002. Channel addition/removal response in Raman fiber amplifiers: Modeling and experimentation. J. Lightwave Technol., 20: 1680-1687.
CrossRef  |  

Karasek, M., J. Kanka, P. Honzatko and P. Peterka, 2004. Time-domain simulation of power transients in Raman fibre amplifiers. Int. J. Numerical Modell.: Electr. Networks Devices Fields, 17: 165-176.
CrossRef  |  

Lee, B.G., A. Biberman, A.C. Turner-Foster, M.A. Foster, M. Lipson, A.L. Gaeta and K. Bergman, 2009. Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides. IEEE Photonics Technol. Lett., 21: 182-184.
CrossRef  |  

Mohammed, A.E.N.A., A.E.F.A. Saad and A.N.Z. Rashed, 2009. High channel Arrayed Waveguide Grating (AWG) in wavelength division multiplexing passive optical networks (WDM-PONs). Int. J. Comp. Sci. Network Security, 9: 253-259.
Direct Link  |  

Mohammed, A.E.N.A., A.E.F.A. Saad and A.N.Z. Rashed, 2009. Matrices of the thermal and spectral variations for the fabrication materials based arrayed waveguide grating (awg) devices. Int. J. Phys. Sci., 4: 205-211.
Direct Link  |  

Mohammed, A.E.N.A., A.E.F.A. Saad and A.N.Z. Rashed, 2009. Thermal sensitivity coefficients of the fabrication materials based a thermal Arrayed Waveguide Grating (AWG) in wide area dense wavelength division multiplexing optical networks. Int. J. Eng. Technol., 1: 131-139.

Mohammed, A.E.N.A., A.E.F.A. Saad, A.N.Z. Rashed and M.M.A. Eid, 2009. Characteristics of multi-pumped raman amplifiers in Dense Wavelength Division Multiplexing (DWDM) optical access networks. Int. J. Comp. Sci. Network Security, 9: 277-284.
Direct Link  |  

Mohammed, A.E.N.A., A.N.Z. Rashed, G.E.S.M. El-Abyad and A.E.F.A. Saad, 2009. High transmission bit rate of a thermal arrayed waveguide grating (AWG) module in passive optical networks. Int. J. Comp. Sci. Inform. Security, 1: 13-21.
Direct Link  |  

Mohammed, A.E.N.A., M.M.E. El-Halawany, A.N.Z. Rashed and M.M.A. Eid, 2009. Recent applications of optical parametric amplifiers in Hybrid WDM/TDM local area optical networks. Int. J. Comp. Sci. Inform. Secur., 3: 14-24.
Direct Link  |  

Nicholson, J.W., 2003. Dispersion compensating Raman amplifiers with pump reflectors for increased efficiency. J. Lightwave Technol., 21: 1758-1762.
CrossRef  |  

Raghuwanshi, S.K., V. Gupta, V.K. Dinesh and S. Talabattula, 2006. Bi-directional optical fiber transmission scheme through raman amplification: Effect of pump depletion. J. Indian Inst. Sci., 86: 655-665.
Direct Link  |  

Wasfi, M., 2009. Optical fiber amplifiers review. Int. J. Commun. Networks Inform. Security, 1: 42-47.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved