International Journal of Soft Computing

Year: 2011
Volume: 6
Issue: 3
Page No. 46 - 53

EOQ Model for Items with Exponential Distribution Deterioration and Linear Trend Demand under Permissible Delay in Payments

Authors : Gour ChandraMahata

References

Aggarwal, S.P. and C.K. Jaggi, 1995. Ordering policies of deteriorating items under permissible delay in payments. J. Operational Res. Soci., 46: 658-662.
Direct Link  |  

Bahari-Kasani, H., 1989. Replenishment schedule for deteriorating items with time-proportional demand. J. Operat. Res. Soc., 40: 75-81.
Direct Link  |  

Begum, R., S.K. Sahu and R.R. Sahoo, 2009. An inventory model with exponential demand rate, finite production rate and shortages. J. Sci. Res., 1: 473-483.
CrossRef  |  

Begum, R., S.K. Sahu and R.R. Sahoo, 2010. An EOQ model for deteriorating items with Weibull distribution deterioration, unit production cost with quadratic demand and shortages). Applied Math. Sci., 4: 271-288.
Direct Link  |  

Chand, S. and J. Ward, 1987. A note on economic order quantity under conditions of permissible delay in payments. J. Operational Res. Soc., 38: 83-84.
CrossRef  |  

Chung, K.J. and P.S. Ting, 1993. A heuristic for replenishment of deteriorating items with a linear trend in demand. J. Operat. Res. Soc., 44: 1235-1241.
Direct Link  |  

Chung, K.J. and P.S. Ting, 1994. On replenishment schedule for deteriorating items with time proportional demand. Prod. Plann. Contr., 5: 392-396.
CrossRef  |  

Covert, R.P. and G.C. Philip, 1973. An EO model for items with Weibull distribution deteriora-tion. AIIE Trans., 5: 323-326.

Dave, U. and L.K. Patel, 1981. (T, Si) policy inventory model for deteriorating items with time proportional demand. J. Operat. Res. Soc., 32: 137-142.
Direct Link  |  

Dave, U., 1979. On a discrete-in-time order-level inventory model for deteriorating items. Operational Res., 30: 349-354.
Direct Link  |  

Deb, M. and K.S. Chaudhuri, 1986. An EOQ model for items with finite rate of production and variable rate of deterioration, Opsearch, 23: 175-181.

Donaldson, W.A., 1977. Inventory replenishment policy for a linear trend in demand: An analytical solution. Operat. Res. Q., 28: 663-670.
Direct Link  |  

Donaldson, W.A., 1984. An equation for the optimal value of T, the inventory replenishment review period when demand is normal. J. Operat. Res. Soc., 35: 137-139.
Direct Link  |  

Emmons, H., 1968. A replenishment model for radioactive nuclide generators. Manage. Sci., 14: 263-273.
Direct Link  |  

Ghare, P.N. and G.F. Schrader, 1963. A model for exponentially decaying inventories. J. Ind. Eng., 15: 238-243.

Ghosh, S.K. and K.S. Chaudhuri, 2004. An order-level inventory model for a deteriorating item with Weibull distribution deterioration, time-quadratic demand and shortages. Int. J. Adv. Model. Opti., 6: 31-45.

Ghosh, S.K. and K.S. Chaudhuri, 2006. An EOQ model for with a quadratic demand, time-proportional deterioration and shortages in all cycles. Int. J. Syst. Sci., 37: 663-672.

Goswami, A. and K.S. Chaudhuri, 1991. An EOQ model for deteriorating items with shortages and a linear trend in demand. J. Operat. Res. Soc., 42: 1105-1110.
Direct Link  |  

Goswami, A. and K.S. Chaudhuri, 1992. Variation of order-level inventory models for deteriorating items. Int. J. Prod. Econ., 27: 111-117.
CrossRef  |  

Goyal, S.K., 1985. Economic order quantity under conditions of permissible delay in payments. J. Operat. Res. Soc., 36: 335-338.
Direct Link  |  

Hargia, M.A., 1993. The inventory replenishment problem with a linear trend in demand. Comput. Ind. Eng., 24: 143-150.
CrossRef  |  

Henery, R.J., 1979. Inventory replenishment policy for increasing demand. J. Operat. Res. Soc., 46: 611-617.
Direct Link  |  

Hwang, H. and S.W. Shinn, 1997. Retailer's pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Comput. Operat. Res., 24: 539-547.
CrossRef  |  

Jalan, A.K. and K.S. Chaudhuri, 1999. Structural properties of an inventory system with deterioration and trended demand. Int. J. Syst. Sci., 30: 627-633.
CrossRef  |  Direct Link  |  

Jalan, A.K., R.R. Giri and K.S. Chaudhuri, 1996. EOQ model for items with Weibull distribution deterioration, shortages and trended demand. Int. J. Syst. Sci., 27: 851-855.
CrossRef  |  

Khanra, S. and K.S. Chaudhuri, 2003. A note on order level inventory model for deteriorating item with time-dependent quadratic demand. Comput. Operat. Res., 30: 1901-1916.

Kim, K.H., 1995. A heuristic for replenishment of deteriorating items with linear trend in demand. Int. J. Prod. Econ., 39: 265-270.
CrossRef  |  

Lin, C., B. Tan and W.C. Lee, 2000. An EOQ model for deteriorating items with time-varying demand and shortages. Int. J. Syst. Sci., 31: 391-400.
Direct Link  |  

McDonald, J.J., 1979. Inventory replenishment policies-computational solutions. J. Operat. Res. Soc., 30: 933-936.
Direct Link  |  

Misra, R.B., 1975. Optimum production lot size model for a system with deteriorating inventory. Int. J. Prod. Res., 13: 495-505.
CrossRef  |  

Murdeshwar, T.M., 1988. Inventory replenishment policy for linearly increasing demand consid-ering shortages-an analytic optimal solution. J. Operat. Res. Soc., 39: 687-692.
Direct Link  |  

Philip, G.C., 1974. A generalized EOQ model for items with weibull distribution. AIIE. Trans., 6: 159-162.
CrossRef  |  

Ritchie, E., 1980. Practical inventory replenishment policies for a linear trend in demand followed by a period of steady demand. J. Operat. Res. Soc., 31: 605-613.
PubMed  |  

Ritchie, E., 1984. The EOQ for linear increasing demand: A simple optimal solution. J. Operat. Res. Soc., 35: 949-952.
Direct Link  |  

Sachan, R.S., 1984. On (T, Si)-policy inventory model for deteriorating items with time proportional demand. J. Operat. Res. Soc., 35: 1013-1019.

Sarma, K.V.S., 1987. A deterministic order level inventory model for deteriorating items with two storage facilities. Eur. J. Operat. Res., 29: 70-73.
CrossRef  |  

Shah, Y.K. and M.C. Jaiswal, 1977. An order-level inventory model for a system with constant rate of deterioration. Opsearch, 14: 174-184.

Silver, E.A. and H.C. Meal, 1969. A simple modification of the EOQ for the case of a varying demand rate. Prod. Inventory Manage., 10: 52-65.
Direct Link  |  

Silver, E.A., 1979. A simple inventory decision rule of a linear trend in demand. J. Operat. Res. Soc., 30: 71-75.

Teng, J.T. and C.T. Chang, 2005. Economic production quantity models for deteriorating items with price-and stock-dependent demand. Comput. Operat. Res., 32: 297-308.
CrossRef  |  

Wagner, H.M. and T.M. Whitin, 1958. Dynamic version of the economic lot size model. Manage. Sci., 5: 89-96.
CrossRef  |  Direct Link  |  

Whitin, T.M., 1957. Theory of Inventory Management. Princeton University Press, Princeton, NJ., pp:62-72.

Xu, H. and H.P. Wang, 1990. An economic ordering policy model for deteriorating items with time proportional demand. Eur. J. Operat. Res., 46: 21-27.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved