Journal of Animal and Veterinary Advances

Year: 2009
Volume: 8
Issue: 9
Page No. 1807 - 1814

Simulated Microgravity Influences Bovine Oocyte in vitro Fertilization and Preimplantation Embryo Development

Authors : Song-yi Jung, Susan D. Bowers and Scott T. Willarda

References

Amann, R.P., R.B. Shabanowitz, G. Huszar and S.J. Broder, 1999. In vitro sperm-binding assay to distinguish differences in populations of human sperm or damage to sperm resulting from cryopreservation. J. Androl., 20: 648-654.
PubMed  |  Direct Link  |  

Andrews, J.C. and S. Winters-Hilt, 2004. Utilization of cell profiling to evaluate bovine spermatozoa in normal and simulated microgravity. Reprod. Fert. Dev., 16: 126-127.
CrossRef  |  Direct Link  |  

Braundmeier, A.G., J.M. Demers, R.D. Shanks and D.J. Miller, 2004. The relationship of porcine sperm zona-binding ability to fertility. J. Anim. Sci., 82: 452-458.
PubMed  |  Direct Link  |  

Bucaro, M.A., J. Fertala, C.S. Adams, M. Steinbeck and P. Ayyaswamy et al., 2004. Bone cell survival in microgravity: Evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann. N. Y. Acad Sci., 1027: 64-73.
CrossRef  |  PubMed  |  Direct Link  |  

Cogoli, A., A. Tschopp and P. Fuchs-Bislin, 1984. Cell sensitivity to gravity. Science, 225: 228-230.
PubMed  |  Direct Link  |  

Crawford-Young, S.J., 2006. Effects of microgravity on cell cytoskeleton and embryogenesis. Int. J. Dev. Biol., 50: 183-191.
CrossRef  |  PubMed  |  Direct Link  |  

Edwards, L.J., P.A. Batt, F. Gandolfi and D.K. Gardner, 1997. Modifications made to culture medium by bovine oviduct epithelial cells: Changes to carbohydrates stimulate bovine embryo development. Mol. Reprod. Dev., 46: 146-154.
CrossRef  |  PubMed  |  Direct Link  |  

Gillette-Ferguson, I., D.G. Ferguson, K.D Poss and S.J. Moorman, 2003. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart. Adv. Space Res., 32: 1641-1646.
CrossRef  |  PubMed  |  Direct Link  |  

Goodwin, T.J., T.L. Prewett, D.A. Wolf and G.F. Spaulding, 1993. Reduced shear stress: A major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell Biochem., 51: 301-311.
CrossRef  |  PubMed  |  Direct Link  |  

Gualandris-Parisot, L., D. Husson, A. Bautz, D. Durand and P. Kan et al., 2002. Effects of space environment on embryonic growth up to hatching of salamander eggs fertilized and developed during orbital flights. Biol. Sci. Space, 16: 3-11.
CrossRef  |  PubMed  |  Direct Link  |  

Hammond, T.G. and J.M. Hammond, 2001. Optimized suspension culture: The rotating-wall vessel. Am. J. Physiol. Renal Physiol., 281: 12-25.
PubMed  |  Direct Link  |  

Hemmersbach, R., M. von der Wiesche and D. Seibt, 2006. Ground-based experimental platforms in gravitational biology and human physiology. Signal Transduct, 6: 381-387.
CrossRef  |  Direct Link  |  

Ijiri, K., 1998. Development of space-fertilized eggs and formation of primordial germ cells in the embryos of Medaka fish. Adv. Space Res., 21: 1155-1158.
CrossRef  |  PubMed  |  Direct Link  |  

Ikeuchi, T., S. Sasaki and K. Kohri, 2005. Human sperm motility in a microgravity environment. Reprod. Med. Biol., 4: 161-167.
Direct Link  |  

Infanger, M., P. Kossmehl, M. Shakibaei, J. Bauer and S. Kossmehl-Zorn et al., 2006. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res., 324: 267-277.
PubMed  |  Direct Link  |  

Ingram, M., G.B. Techy, R. Saroufeem, O. Yazan, K.S. Narayan, T.J. Goodwin and G.F. Spaulding, 1997. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In vitro Cell. Dev. Biol. Anim., 33: 459-466.
PubMed  |  Direct Link  |  

Klaus, D.M., 2001. Clinostats and bioreactors. Gravit Space Biol. Bull., 14: 55-64.
PubMed  |  

Klaus, D.M., P. Todd and A. Schatz, 1998. Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res., 21: 1315-1318.
PubMed  |  Direct Link  |  

Kojima, Y., S. Sasaki, Y. Kubota, T. Ikeuchi, Y. Hayashi and K. Kohri, 2000. Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fert. Steril, 74: 1142-1147.
PubMed  |  Direct Link  |  

Lewis, M.L., 2004. The cytoskeleton in spaceflown cells: An overview. Gravit Space Biol. Bull., 17: 1-11.
Direct Link  |  

Lewis, M.L., J.L. Reynolds, L.A. Cubano, J.P. Hatton, B.D. Lawless and E.H. Piepmeier, 1998. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J., 12: 1007-1018.
PubMed  |  Direct Link  |  

Miller, G.F., D.W. Gliedt, J.M. Rakes and R.W. Rorie, 1994. Addition of penicillamine, hypotaurine and epinephrine (PHE) or bovine oviductal epithelial cells (BOEC) alone or in combination to bovine in vitro fertilization medium increases the subsequent embryo cleavage rate. Theriogenology, 41: 689-696.
PubMed  |  

Puglisi, R., D. Balduzzi and A. Galli, 2004. In vitro sperm penetration speed and its relationship with in vivo bull fertility. Reprod. Domestic Anim., 39: 424-428.
CrossRef  |  Direct Link  |  

Schenker, E.B. and K.E. Forkheim, 1998. Early development of mice embryo in microgravity environment on STS-80 space flight. ASGSB Bull., 92. http://www.asgsb.org/programs/1998/92.html.

Schwarz, R.P., T.J. Goodwin and D.A. Wolf, 1992. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. J. Tissue Cult. Methods, 14: 51-57.
CrossRef  |  PubMed  |  Direct Link  |  

Serova, L.V. and L.A. Denisova, 1982. The effect of weightlessness on the reproductive function of mammals. Physiologist, 25: S9-12.
PubMed  |  

Shimada, N. and S.J. Moorman, 2006. Changes in gravitational force cause changes in gene expression in the lens of developing zebrafish. Dev. Dyn., 235: 2686-2694.
CrossRef  |  PubMed  |  Direct Link  |  

Souza, K.A., S.D. Black and R.J. Wassersug, 1995. Amphibian development in the virtual absence of gravity. Proc. Natl. Acad Sci. USA., 92: 1975-1978.
PubMed  |  Direct Link  |  

Tabony, J., N. Rigotti, N. Glade and S. Cortes, 2007. Effect of weightlessness on colloidal particle transport and segregation in self-organizing microtubule preparations. Biophys. Chem., 127: 172-180.
CrossRef  |  PubMed  |  Direct Link  |  

Tash, J.S., S. Kim, M. Schuber, D. Seibt and W.H. Kinsey, 2001. Fertilization of sea urchin eggs and sperm motility are negatively impacted under low hypergravitational forces significant to space flight. Biol. Reprod., 65: 1224-1231.
PubMed  |  Direct Link  |  

Unsworth, B.R. and P.I. Lelkes, 1998. Growing tissues in microgravity. Nature Med., 4: 901-907.
PubMed  |  Direct Link  |  

Uva, B.M., M.A. Masini, M. Sturla, P. Prato and M. Passalacqua et al., 2002. Clinorotation-induced weight-lessness influences the cytoskeleton of glial cells in culture. Brain Res., 934: 132-139.

White, R.J. and M. Averner, 2001. Humans in space. Nature, 409: 1115-1158.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, H., G.K. Bhat and R. Sridaran, 2002. Clinostat rotation induces apoptosis in luteal cells of the pregnant rat. Biol. Reprod., 66: 770-777.
PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved