Journal of Engineering and Applied Sciences

Year: 2011
Volume: 6
Issue: 6
Page No. 408 - 415

Micro-Mechanical Analysis of Thermal Expansion of Damaged Composites

Authors : Li Li, Zhou Chuwei and Binod Aryal

References

Agbossou, A. and J. Pastor, 1997. Thermal stresses and thermal expansion coefficients of n-layered fiber-reinforced composites. J. Compos. Sci. Technol., 57: 249-260.
CrossRef  |  

Fellah, M., A. Tounsi, K.H. Amara and E.A. Adda Bedia, 2007. Effect of transverse cracks on the effective thermal expansion coefficient of aged angle-ply composites laminates. J. Theor. Applied Fracture Mech., 48: 32-40.
CrossRef  |  

He, M.Y., D. Singh, J.C. McNulty and F.W. Zok, 2002. Thermal expansion of unidirectional and cross-ply fibrous monoliths. J. Compos. Sci. Technol., 62: 967-976.
Direct Link  |  

Islam, R., S.G. Sjolind and A. Pramila, 2001. Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites. J. Compos. Mater., 35: 1762-1776.
CrossRef  |  

Karadeniz, Z.H. and D. Kumlutas, 2007. A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct., 78: 1-10.
CrossRef  |  

Karami, G. and M. Garnich, 2005. Micromechanical study of thermoelastic behavior of composites with periodic fiber waviness. Compos. Part B Eng., 36: 241-248.
CrossRef  |  

Lu, T.J. and J.W. Hutchinson, 1995. Effect of matrix cracking and interface sliding on the thermal expansion of fiber-reinforced composites. Composites, 26: 403-414.
CrossRef  |  

Ohnuki, T. and Y. Tomota, 1996. Thermal expansion coefficient in a real fiber-reinforced metal matrix composite. J. Scripta Materialia, 34: 713-720.
Direct Link  |  

Shen, G. and H.G. kai, 2006. Mechanics of Composite Material. Tsinghua University Press, Beijing, pp: 250-252.

Shen, W., 1995. Damage Mechanics. Huan Zhong University Press, Wuhan, pp: 120-122.

Sideridis, E., V.N. Kytopoulos, E. Kyriazi and G. Bourkas, 2005. Determination of thermal expansion coefficient of particulate composites by the use of a triphase model. Compos. Sci. Technol., 65: 909-919.
CrossRef  |  

Tan, P., L.Y. Tong and G.P. Steven, 1999. Micromechanics models for mechanical and thermomechanical properties of 3D through-the-thickness angle interlock woven. J. Compos. Part A Applied Sci. Manuf., 30: 637-648.
CrossRef  |  

Wu, Z. and W.J. Chen, 2007. A quadrilateral element based on refined global-local higher-order theory for thermal/mechanical analysis of laminated plates. Int. J. Solids Struct., 44: 3187-3217.
CrossRef  |  

Xia, Z., Y. Zhang and F. Ellyin, 2003. A unified periodical boundary conditions for representative volume elements of composites and applications. J. Int. J. Solids Struct., 40: 1907-1921.
CrossRef  |  

Yilmaz, S. and D.C. Dunand, 2004. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu-60vol%ZrW2O8 composite. J. Compos. Sci. Technol., 64: 1895-1898.
CrossRef  |  

Zhen, W., Y.K. Cheung, S. Lo and W.J. Chen, 2010. On the thermal expansion effects in the transverse direction of laminated composite plates by means of a global-local higher-order model. J. Int. J. Mech. Sci., 52: 970-981.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved