Journal of Engineering and Applied Sciences

Year: 2012
Volume: 7
Issue: 5
Page No. 372 - 378

Monitoring of Corrosion of Aeromonas eucrenohila in the First Steps of Biofilm Formation on Nickel

Authors : A.P.F. Tabrizi, H. Nazir, N.O. San and G. Donmez

References

Abd El-Haleem, S.M. and S. Abd El-Wanees, 2011. Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines. Mater. Chem. Phys., 128: 418-426.
CrossRef  |  

Abdallah, M. and A.Y. El-Etre, 2003. Corrosion inhibition of nickel in sulfuric acid using tween surfactants. Portugaliae Electrochim. Acta, 21: 315-326.
Direct Link  |  

Beech, I., L. Hanjagsit, M. Kalaji, A.L. Neal and V. Zinkevich, 1999. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology, 145: 1491-1497.
CrossRef  |  Direct Link  |  

Beech, I.B. and C.W.S. Cheung, 1995. Interactions of exopolymers produced by sulphate reducing bacteria with metal ions, Int. Biodeter. Biodegr., 35: 59-72.
CrossRef  |  

Caldwell, D.E., D.R. Korber and J.R. Lawrence, 1992. Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J. Microbiol. Method, 15: 249-261.
CrossRef  |  

Cetin, D. and M.L. Aksu, 2009. Corrosion behavior of low-alloy steel in the presence of 36 Desulfotomaculum sp., Corros. Sci., 51: 1584-1588.
CrossRef  |  

Chan, K.Y., L.C. Xu and H.H.P. Fang, 2002. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria. Environ. Sci. Technol., 36: 1720-1727.
PubMed  |  

Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber and H.M. Lappin-Scott, 1995. Microbial biofilms. Annu. Rev. Microbiol., 49: 711-745.
CrossRef  |  PubMed  |  Direct Link  |  

El-Taib Heakal, F., M.M. Hefny and A.M. Abd El-Tawab, 2010. Electrochemical behavior of 304L stainless steel in high saline and sulphate solutions containing alga Dunaliella salina and b-carotene. J. Alloy. Compd., 491: 636-642.
CrossRef  |  

Fang, H.H.P., L.C. Xu and K.Y. Chan, 2002. Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res., 36: 4709-4716.
CrossRef  |  PubMed  |  Direct Link  |  

Franklin, M.J., D.C. White, B. Little, R. Ray and R. Pope, 2000. The role of bacteria in pit propagation of 42 carbon steel. Biofouling, 15: 13-23.
PubMed  |  

Gaylarde, C.C., 1992. Sulfate-reducing bacteria which do not induce accelerated corrosion. Int. Biodeterior. and Biodegrad., 30: 331-338.
CrossRef  |  

Geesey, G.G., L. Jang, J.G. Jolley, M.R. Hankins, T. Iwaoka and P.R. Griffiths, 1988. Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci. Technol., 20: 161-165.
Direct Link  |  

Hori, K. and S. Matsumoto, 2010. Bacterial adhesion: From mechanism to control. Biochem. Eng. J., 48: 424-434.
CrossRef  |  

Jouen, S., M. Jean and B. Hannoyer, 2004. Atmospheric corrosion of nickel in various outdoor environments. Corrosion Sci., 46: 499-514.
CrossRef  |  

Lewandowski, Z., T. Funk, F. Roe and B. Little, 1994. Spatial Distribution of pH at Mild Steel Surfaces using an Iridium Oxide Microelectrode. In: Microbiologically Influenced Corrosion Testing, Kearns, J.R. and B.J. Little (Eds.). ASTM STP 1232, ASTM, Philadephia, pp: 61-69.

Little, B., P. Wagner, P. Angell and D. White, 1996. Correlation between localized anodic areas and Oceanospirillum biofilms on copper. Int. Biodeterior. Biodegrad., 37: 159-162.
CrossRef  |  

Little, B.J., R.I. Ray, P.A. Wagner, J. Jones Meehan, C.C. Lee and F. Mansfeld, 1999. Spatial relationships between marine bacteria and localized corrosion on polymer coated steel. Biofouling, 13: 301-321.
CrossRef  |  

Roe, F.L., Z. Lewandowski and T. Funk, 1996. Simulating microbiologically influenced corrosion by depositing extracellular biopolymer on mild steel surfaces. Corrosion, 52: 744-752.
Direct Link  |  

San, N.O., H. Nazır and G. Donmez, 2011. Microbial corrosion of Ni-Cu alloys by Aeromonas eucrenophila bacterium. Corrosion Sci., 53: 2216-2221.
CrossRef  |  

Sauerbrey, G., 1959. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys., 155: 206-222.
Direct Link  |  

Teng, F., Y.T. Guan and W.P. Zhu, 2008. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation. Corrosion Sci., 50: 2816-2823.
CrossRef  |  

Valcarce, M.B., S.R. de Sanchez and M. Vazquez, 2005. Localizedattack of copper and brass in tap water: The effect of Pseudomonas. Corros. Sci., 47: 795-809.
CrossRef  |  

Videla, H.A., 2001. Microbially induced corrosion: An updated overview. Int. Biodeter. Biodegrad., 48: 176-201.

Wang, W., J. Wang, H. Xu and X. Li, 2006. Electrochemical techniques used in MIC studies. Mater. Corrosion, 57: 800-804.
CrossRef  |  

Yuan, S.J., M.F. Amy Choong and S.O. Pehkonen, 2007. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corrosion Sci., 49: 4352-4385.
CrossRef  |  

Zuo, R., E. Kus, F. Mansfeld and T.K. Wood, 2005. The importance of live biofilms in corrosion protection. Corrosion Sci., 47: 279-287.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved