Journal of Engineering and Applied Sciences

Year: 2016
Volume: 11
Issue: 5
Page No. 1028 - 1035

Studying the Effect of Zone’s Volume to Area Ratio (V/A) on its Energy Cycle in Yazd, Iran Hot-Arid Climate

Authors : Shahram Nassehzadeh Tabriz and Fagan Aliyev

References

Al-Sanea, S.A. and M.F. Zedan, 2002. Optimum Insulation Thickness for Building Walls in a Hot-Dry Climate. Int. J. Ambient Energy, 23: 115-126.
Direct Link  |  

Al-Sanea, S.A., M. Zedan and S. Al-Hussain, 2012. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Applied Energy, 89: 430-442.
CrossRef  |  Direct Link  |  

Alawadhi, E.M., 2008. Thermal analysis of a building brick containing phase change material. Energy Build., 40: 351-357.
CrossRef  |  Direct Link  |  

Ali-Toudert, F. and H. Mayer, 2006. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ., 41: 94-108.
CrossRef  |  

Askar, H., S.D. Probert and W.J. Batty, 2001. Windows for buildings in hot arid countries. Applied Energy, 70: 77-101.
CrossRef  |  Direct Link  |  

Badescu, V. and B. Sicre, 2003. Renewable energy for passive house heating: II. Model. Energy Build., 35: 1085-1096.
CrossRef  |  Direct Link  |  

Balaras, C.A., 1996. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy Build., 24: 1-10.
CrossRef  |  Direct Link  |  

Braun, J.E., 2003. Load control using building thermal mass. J. Solar Energy Eng., 125: 292-301.
CrossRef  |  Direct Link  |  

Cena, K. and R. de Dear, 2001. Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate. J. Thermal Biol., 26: 409-414.
CrossRef  |  Direct Link  |  

Crawley, D.B., J.W. Hand, M. Kummert and B.T. Griffith, 2008. Contrasting the capabilities of building energy performance simulation programs. Build. Environ., 43: 661-673.
CrossRef  |  

Dodoo, A., L., Gustavsson and R. Sathre, 2012. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building. Applied Energy, 92: 462-472.
CrossRef  |  

Doelling, M.C. and F. Nasrollahi, 2013. Parametric design: A case study in design-simulation integration. Proceedings of the 13th Conference of International Building Performance Simulation Association, August 26-28, 2013, Chambery, France, pp: 885-892.

Faizi, F., M. Noorani, A. Ghaedi and M. Mahdavinejad, 2011. Design an optimum pattern of orientation in residential complexes by analyzing the level of energy consumption (Case study: Maskan Mehr Complexes, Tehran, Iran). Proc. Eng., 21: 1179-1187.
CrossRef  |  Direct Link  |  

Frontczak, M. and P. Wargocki, 2011. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ., 46: 922-937.
CrossRef  |  Direct Link  |  

Gilbert, R.B. and K. Kissock, 2007. The effect of thermal mass on thermal transmission loads. Proceedings of the ASME Energy Sustainability Conference, July 27-30, 2007, California, USA., pp: 511-519.

Gregory, K., B. Moghtaderi, H. Sugo and A. Page, 2008. Effect of thermal mass on the thermal performance of various Australian residential constructions systems. Energy Build., 40: 459-465.
CrossRef  |  Direct Link  |  

Hashemi, N., R. Fayaz and M. Sarshar, 2010. Thermal behaviour of a ventilated double skin facade in hot arid climate. Energy Build., 42: 1823-1832.
CrossRef  |  Direct Link  |  

Hasnain, S.M., 1998. Review on sustainable thermal energy storage techniques, Part 1: Heat storage materials and techniques. J. Energy Conversion Manage., 30: 1127-1138.

Hawes, D.W., D. Feldman and D. Banu, 1993. Latent heat storage in building materials. Energy Build., 20: 77-86.
CrossRef  |  Direct Link  |  

Heidari, S. and S. Sharples, 2002. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy Build., 34: 607-614.
CrossRef  |  Direct Link  |  

Johansson, E., 2006. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ., 41: 1326-1338.
CrossRef  |  Direct Link  |  

Kalogirou, S.A., G. Florides and S. Tassou, 2002. Energy analysis of buildings employing thermal mass in Cyprus. Renew. Energy, 27: 353-368.
CrossRef  |  Direct Link  |  

Karlsson, J., 2012. Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort. Licentiate Thesis, Lund Institute of Technology, Lund, Sweden.

Khudhair, A.M. and M.M. Farid, 2004. A review on energy conservation in building applications with thermal energy storage by latent heat using phase change materials. Energy Conversion Manage., 45: 263-275.
Direct Link  |  

Kosny, J., T. Petrie, D. Gawin, P. Childs, A. Desjarlais and J. Christian, 2001. Thermal mass-energy savings potential in residential buildings. Oak Ridge National Labs., USA.

Lavafpour, Y. and M. Surat, 2011. Passive low energy architecture in hot and dry climate. Aust. J. Basic Applied Sci., 5: 757-765.
Direct Link  |  

Masmoudi, S. and S. Mazouz, 2004. Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy Build., 36: 710-719.
CrossRef  |  Direct Link  |  

Miller, W., L. Buys and J. Bell, 2012. Performance evaluation of eight contemporary passive solar homes in subtropical Australia. Build. Environ., 56: 57-68.
CrossRef  |  Direct Link  |  

Mlakar, J. and J. Strancar, 2011. Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy Build., 43: 1443-1451.
CrossRef  |  Direct Link  |  

Ogoli, D.M., 2003. Predicting indoor temperatures in closed buildings with high thermal mass. Energy Build., 35: 851-862.
CrossRef  |  Direct Link  |  

Oliver, A., 2012. Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energy Build., 48: 1-7.
CrossRef  |  Direct Link  |  

Pasupathy, A. and R. Velraj, 2008. Effect of double layer phase change material in building roof for year round thermal management. Energy Build., 40: 193-203.
CrossRef  |  Direct Link  |  

Poel, B., G. van Cruchten and C.A. Balaras, 2007. Energy performance assessment of existing dwellings. Energy Build., 39: 393-403.
CrossRef  |  Direct Link  |  

Porta-Gandara, M.A., E. Rubio, J.L. Fernandez and V.G. Munoz, 2002. Effect of passive techniques on interior temperature in small houses in the dry, hot climate of northwestern Mexico. Renew. Energy, 26: 121-135.
CrossRef  |  Direct Link  |  

Raman, P., S. Mande and V.V.N. Kishore, 2001. A passive solar system for thermal comfort conditioning of buildings in composite climates. Solar Energy, 70: 319-329.
CrossRef  |  Direct Link  |  

Ratti, C., D. Raydan and K. Steemers, 2003. Building form and environmental performance: Archetypes, analysis and an arid climate. Energy Build., 35: 49-59.
CrossRef  |  Direct Link  |  

Raychaudhuri, B.C., S. Ali and D.P. Garg, 1965. Indoor climate of residential buildings in hot arid regions: Effect of orientation. Build. Sci., 1: 79-88.
CrossRef  |  Direct Link  |  

Ruud, M.D., J.W. Mitchell and S.A. Klein, 1990. Use of building thermal mass to offset cooling loads. ASHRAE Trans., Vol. 96.

Saeed, S.A.R., 1996. Thermal comfort requirements in hot dry regions with special reference to Riyadh part 2: For Friday prayer. Int. J. Ambient Energy, 17: 17-21.
CrossRef  |  Direct Link  |  

Sedki, A., N. Hamza and T. Zaffagnini, 2013. Effect of orientation on indoor thermal neutrality in winter season in hot arid climates case study: Residential building in greater Cairo. Int. J. Eng. Technol., 5: 712-716.
Direct Link  |  

Skibin, D. and C. Noach, 1982. Optimal oreintation of buildings in the Negev semi-arid conditions. Energy Build., 4: 185-189.
CrossRef  |  Direct Link  |  

Vangimalla, P.R., S.J. Olbina, R.R. Issa and J. Hinze, 2011. Validation of Autodesk Ecotect accuracy for thermal and daylighting simulations. Proceedings of the Winter Simulation Conference, December 11-14, 2011, Phoenix, AZ., USA., pp: 3388-3399.

Yılmaz, Z., 2007. Evaluation of energy efficient design strategies for different climatic zones: Comparison of thermal performance of buildings in temperate-humid and hot-dry climate. Energy Build., 39: 306-316.
CrossRef  |  Direct Link  |  

Yang, L. and Y. Li, 2008. Cooling load reduction by using thermal mass and night ventilation. Energy Build., 40: 2052-2058.
CrossRef  |  

Yu, J., C. Yang and L. Tian, 2008. Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy Build., 40: 1536-1546.
CrossRef  |  Direct Link  |  

Zalba, B., J.M. Marin, L.F. Cabeza and H. Mehling, 2003. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Applied Therm. Eng., 23: 251-283.
CrossRef  |  Direct Link  |  

Zeng, R., X. Wang, H. Di, F. Jiang and Y. Zhang, 2011. New concepts and approach for developing energy efficient buildings: Ideal specific heat for building internal thermal mass. Energy Build., 43: 1081-1090.
CrossRef  |  Direct Link  |  

Zhang, C., Y. Chen, L. Wu and M. Shi, 2011. Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy Build., 43: 3514-3520.
CrossRef  |  Direct Link  |  

Zhou, D., C.Y. Zhao and Y. Tian, 2012. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92: 593-605.
CrossRef  |  

Zhu, L., R. Hurt, D. Correia and R. Boehm, 2009. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house. Energy Build., 41: 303-310.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved